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 A B S T R A C T

 Inference serving systems are leveraged to deploy deep learning (DL) models as services. Accelerators such as 
Graphics Processing Units (GPUs) have been extensively used in these systems to reduce model execution time. 
As accelerators become more powerful and expensive, GPU sharing among DL models across different inference 
requests is a common practice. However, GPU memory capacity becomes a bottleneck when the number of 
collocated models increases, making this approach unsustainable. At the same time, collocated models may 
vary in popularity levels — some are accessed frequently and others are not, leading to low resource efficiency 
and system performance. While some existing inference serving systems offer the capability to dynamically load 
and cache model in memory, they are typically locality-aware and exhibit poor performance for DL inference 
serving.

To this end, we present mCache, a novel inference serving-oriented caching system to dynamically manage 
a set of collocated models with diverse popularity for efficient use of memory. mCache treats each DL model 
as a cacheable object, and loads model on demand and unloads models when not in use. Rather than using 
recency or frequency, we manage models in GPU memory based on rank-based importance scores, which jointly 
consider cache access patterns and model-specific factors, serving as a unified metric to compare different 
models. During model serving, the importance scores of cached models are dynamically updated, and the 
least important model is evicted to make room for a newly targeted model when the cache is full. Evaluation 
with representative DL models shows that mCache reduces memory footprint by nearly a half with a modest 
inference latency increase. Compared to existing serving system using Least Frequently Used (LFU) caching 
algorithm, mCache improves throughput by up to 1.5× and 2.39× given the 40% and 80% GPU memory 
capacity.
1. Introduction

Model as a Service (MaaS) is an increasingly popular deep learning 
(DL) inference serving paradigm. Many cloud providers such as Google 
Cloud (Anon, 2025e) and Amazon (Anon, 2025a) offer MaaS as an 
interface to usage-driven back-end services. MaaS provides an intuitive 
interface for developers to deploy DL model prediction services. In 
contrast to traditional cloud interfaces, in MaaS, developers do not 
explicitly provision or configure virtual machines (VMs) or containers. 
Instead, developers simply upload their DL model applications to the 
cloud; models get executed when applications are ‘‘triggered’’ or ‘‘in-
voked’’ by end-users, for example, the receipt of a message (e.g., an 
HTTP request). The cloud provider is then responsible for providing the 
required resources (e.g., container instances) for executing each model.

Obviously, cloud providers seek to deliver contractual-compliant 
DL inference performance at the lowest possible resource cost. To 
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achieve this, some works have explored cluster-level techniques, such 
as autoscaling (Romero et al., 2021; Tang et al., 2019; Zhang et al., 
2019; Mo et al., 2023) and scheduling (Mendoza et al., 2021; Tan et al., 
2021; Wang et al., 2021; Wu et al., 2020) for DL inference jobs. These 
techniques are useful because DL inference service is compute-intensive 
and typically requires multiple Graphics Processing Unit (GPU) accel-
erated instances to serve in parallel. Another commonly used approach 
is to collocate inference jobs on the same GPU so their models can 
share the compute resource, which is our concern in this work. Most 
existing studies on collocation optimization have focused on techniques 
such as operator scheduling (Ding et al., 2021; Yu et al., 2021), service 
router (Choi and Rhu, 2020; Mendoza et al., 2021; Wu et al., 2020; 
Soifer et al., 2019), resource partitioning (Anon, 2025h; Dhakal et al., 
2020; Ghodrati et al., 2020) to avoid job interference. However, two 
challenges have received less attention: (1) memory limitation. GPU 
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memory capacity is limited and can only accommodate a small number 
of models, hindering higher hardware utilization and cost efficiency. 
(2) resource usage disparity. While GPU memory remains filled with 
models during inference serving, computational utilization stays low 
due to some models being infrequently accessed. Ideally, we want to 
host as many models as possible on a single GPU, even if the total 
memory demand of models exceeds the memory capacity, while giving 
the illusion that all models are always warm (loaded in memory), yet 
spend resources as if they are always cold (not loaded in memory).

We thus propose model-level in-memory caching, or model caching, 
a novel approach to address these issues in collocation inference and, 
more generally, improve the performance of cloud-based DL inference 
serving. Model caching handles DL models as cacheable objects. Instead 
of loading all of the targeted models in GPU memory at once, it 
dynamically loads and unloads models into and out of memory based 
on their usage patterns. Upon the arrival of an invocation request, the 
serving system efficiently decides which models to retain in the cache 
and which ones to remove based on request information and in-memory 
model items, particularly when there is insufficient memory space. For 
instance, if the requested model is already resident in memory, this 
constitutes a cache hit. In that case, it is served faster since the serving 
system does not need to reload it again. Otherwise, the invocation 
represents a cache miss and experiences a longer response time owed 
to model load delay.

A key challenge of model caching is to decide which model to evict 
when the cache is full. A common practice is to determine the eviction 
candidates using traditional caching algorithms like Least Recently 
Used (LRU) or Least Frequently Used (LFU), based on the recency or 
frequency of their use. For example, Amazon Web Services (AWS) Sage-
Maker (Anon, 2025b) uses LFU algorithm for cache replacement when 
hosting multiple models in one container. However, these traditional 
caching algorithms do not work effectively with model management 
because they primarily target higher cache hit ratio, without consid-
ering a key feature of DL inference — loading models completely into 
memory prior to being executed. As a result, a new cache replacement 
algorithm is needed for model caching.

For this purpose, we design and implement mCache, a caching 
system specifically designed for DL inference serving. mCache enables 
model cacheability by introducing a rank-based importance score that 
captures the priority of each model and designing an effective caching 
algorithm based on the score. The importance score is calculated as 
a uniform metric to compare DL models that are heterogeneous both 
in terms of model size and loading time. The model with the smallest 
importance score is the most suitable candidate for eviction. mCache 
then uses these importance variations to make caching decisions during 
DL inference serving. Based on these techniques, our caching solution 
keeps the most important models in the cache and avoids random 
evictions.

In summary, this paper offers the following key contributions:

• We introduce a novel importance calculation approach to iden-
tify the relative importance of in-memory model items for DL 
inference serving.

• We design a cache replacement algorithm based on model impor-
tance to dynamically manage models in GPU memory.

• We present the design of mCache, a new caching system inte-
grated with the proposed algorithm to enable model cacheability 
for inference serving system.

• We implement mCache using Tensorflow Serving as the under-
lying framework. We evaluate it under four different workload 
characteristics and compare mCache against other caching meth-
ods. Our results show that mCache saves nearly a half memory 
usage with a modest increase in inference latency in correlated 
workload.
2 
2. Background and related work

2.1. Deep learning inference serving

Deep learning inference serving is the process of deploying trained 
deep learning models into a production environment to make predic-
tions on new, unseen data in real-time or batch mode. System design 
must balance competing demands such as latency, throughput, and re-
source efficiency, depending on the use case. For instance, low-latency 
inference (e.g., < 100 ms) is critical for interactive applications like 
virtual assistants, while high-throughput batch processing suits offline 
tasks like video analysis. The conventional approach to deploying DL 
prediction services is to provision a container and, within the container, 
host the DL model on a serving framework. The serving framework 
is analogous to a webserver and exposes services with interfaces via 
a REST API. For example, DL serving frameworks like TensorFlow 
Serving (Olston et al., 2017; Anon, 2025j), TorchServe (Anon, 2025k) 
and NVIDIA Triton (Anon, 2025i) host the model in a Docker (Anon, 
2025d) container to enable process isolation and expose services via 
HTTP or RPC protocols.

Since DL models mainly need to support user-oriented applica-
tions, DL inference serving generally has certain latency constraints, 
which require queries to be served within a given latency. A practical 
approach to accelerate model inference is to adopt DL-dedicated hard-
ware, such as GPU and TPU (Jouppi et al., 2017). This approach works 
because DL models contain many complex computational operations, 
such as matrix multiplication, which can be efficiently parallelized 
using accelerators, significantly reducing execution time. Meanwhile, 
given model prediction services’ scale and elastic scaling requirements, 
serving systems are typically deployed in the cloud. Cloud providers 
can then allocate a set of GPU-accelerated container instances and use 
a resource manager such as Kubernetes (Luksa, 2017) to deploy and 
manage the service.

2.2. Multi-model co-location inference

Multi-model co-location inference is a multi-tenant single-device 
computing paradigm in which multiple DL models co-run on a single 
high-performance hardware. The introduction of collocation inference 
optimization is mainly due to the mismatch between the huge compu-
tational power of recent GPUs (e.g., NVIDIA A100 with 312 TFLOPS) 
and the inference requirements of general DL models (e.g., ResNet50 
model with 4 GFLOPs). Executing such a single DL model on a modern 
GPU may lead to severe resource underutilization. Collocation infer-
ence thus offers a cost-efficient approach to accommodate more model 
deployments by improving hardware utilization (Yu et al., 2022).

However, as the number of hosted models increases, collocation 
inference encounters obstacles in further improving GPU resource us-
age. One critical reason is the constrained capacity of GPU memory, 
which restricts the number of models that can reside in memory si-
multaneously. Unlike CPU memory, which is expandable, GPU memory 
capacity is fixed and dependent on the specific GPU hardware type. 
An inference server equipped with a fixed-size memory GPU can only 
accommodate a limited number of models. Expanding GPU memory by 
using GPUs with larger capacity or increasing the number of servers 
may be challenging to sustain given the significant monetary cost asso-
ciated with these options. As such, efficiently managing GPU memory 
to concurrently accommodate a diverse set of models is critical for DL 
inference serving.

2.3. Memory management for deep learning inference

Deploying multiple models on a single GPU requires dynamically swap-
ping models in and out of GPU memory based on demand. When a 
request arrives for a model that is not currently loaded, the system 
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Table 1
A comparison of mCache and existing works on model caching.
 Solutions Caching policy GPU-enabled Cloud Locality-

aware
DL inference-
oriented

 

 Ogden et al. (2021) BeladyMIN 
variant

× × × ×  

 Anon (2025b) LFU ✓ ✓ ✓ ×  
 Gujarati et al. 
(2020)

LFU/LRU ✓ ✓ ✓ ×  

 Cox et al. (2020) LRU ✓ ✓ ✓ ×  
 Zhao et al. (2023) LRU ✓ ✓ ✓ ×  
 Dakkak et al. (2019) LRU ✓ ✓ ✓ ×  
 mCache IAM ✓ ✓ × ✓  
must load the required model into memory, perform the inference, 
and then potentially unload it afterward. The main challenge in this 
process arises when a model that is not resident in GPU memory is 
needed for an inference task. Given the large size of these models, 
the time required to load them into the GPU introduces a significant 
performance bottleneck.

A primary strategy for addressing this issue is to keep model param-
eters close to the GPU to reduce loading latency. An effective approach, 
as proposed in Zou et al. (2023), is to cache model parameters in system 
RAM. By storing model parameters in host memory, the data transfer 
time to the GPU during inference is substantially reduced, thereby 
enabling quicker loading and unloading of models from the GPU, 
particularly when hosting multiple models on the same computing 
instance.

Caching models in host memory can significantly reduce loading 
times, often to just a few milliseconds. However, transferring data from 
host memory to GPU memory remains more time-consuming than the 
actual inference process, leading to GPU idle periods during data trans-
fer. To address this inefficiency, the approach presented in Gujarati 
et al. (2020) conceptualizes GPU memory as a cache, enabling fre-
quently or recently accessed models to remain resident in GPU memory 
and thereby avoid costly loading delays. The ModelMesh framework, as 
detailed in Cox et al. (2020), preloads model parameters and leverages 
GPU memory as a cache to prioritize frequently used models. It employs 
an LRU caching strategy to facilitate efficient model serving. Similarly, 
the approach in Zhao et al. (2023) implements a GPU memory caching 
mechanism that leverages the GPU’s LRU list to determine which 
models to evict. Trims (Dakkak et al., 2019) introduces GPU caching 
via a daemon process that provisions GPU memory by intercepting 
CUDA requests and applying basic caching strategies, such as LRU, 
to reduce latency. Ogden et al. (2021) propose a lightweight cache 
eviction policy based on a BeladyMIN variant, designed to optimize 
model caching in system memory for edge-based inference scenarios. 
In the commercial domain, AWS SageMaker (Anon, 2025b) adopts an 
LFU-based algorithm to dynamically load and cache models based on 
access frequency.

The aforementioned solutions treat GPU memory as a cache, which 
aligns with the focus of our work. However, they typically rely on 
traditional cache replacement policies (e.g., LRU), which are subopti-
mal for model caching. The effectiveness of such algorithms depends 
heavily on factors like the inter-arrival time distribution of requests and 
the relative popularity of cached objects, aiming primarily to improve 
conventional metrics such as cache hit ratio. In contrast, mCache is 
purpose-built for deep learning inference and prioritizes user-centric 
metrics, particularly inference latency. It explicitly considers model-
specific characteristics, such as model size and the latency overhead 
caused by cache misses. A comparison between mCache and related 
work is presented in Table  1.
3 
3. Motivation

Efficient management of GPU memory requires a comprehensive 
understanding of the characteristics of the DL serving workload. We 
begin this section by analyzing a representative serving workload, with 
a particular focus on characteristics related to the invocation pattern 
and memory usage. Additionally, we compare the model execution time 
to the loading time.

3.1. Characterization of serving workload

For workload characterization, we use Microsoft’s publicly released 
Azure Functions trace (Shahrad et al., 2020). We choose this trace 
because it represents the real-world production FaaS workloads from 
a major cloud provider, and recent studies (Lv et al., 2025; Strati et al., 
2024; Zhao et al., 2023; Li et al., 2023; Zhang et al., 2023) have 
recognized its representativeness for DL serving workloads. Our use of 
Azure traces as a surrogate for DL serving workloads is justified by two 
key reasons: First, both FaaS and MaaS typically offer services for user-
oriented applications, which often leads to a comparable invocation 
pattern. Furthermore, the Azure trace includes a significant number 
of components involving requests for DL models (Fuerst and Sharma, 
2021; Ishakian et al., 2018). This suggests that insights gained from 
analyzing the FaaS workload’s traffic distribution are relevant to the 
DL serving workload.

Invocation Patterns. We first parse the Azure trace to explore the 
distribution of requests rate. Fig.  1 shows the distribution of request 
rate by dividing the average requests per second into 100 buckets on a 
logarithmic scale, where the 𝑋-axis represents the average request rate 
of the functions within 24 h, and the 𝑌 -axis indicates the number of 
functions corresponding to the average request rate. Note that an ap-
plication may have one or more functions, and only functions triggered 
by HTTP requests are counted. As shown in Fig.  1, the average requests 
per second range from a minimum of 1.15e−05 to a maximum of 
9.67e+02. While some functions have a request rate close to 1000, only 
1.17% of functions are invoked more than once per second, showing 
a severe long-tailed distribution. The observation indicates that within 
the serving workload, there is a significant variation in average request 
rates among different applications. Only a subset of highly popular 
applications experiences elevated average request rates, whereas others 
exhibit markedly lower rates. Additionally, there exists a pronounced 
disparity in the frequency of popular versus unpopular applications, 
with the latter outnumbering the former by a considerable margin. 
Such invocation patterns highlight the necessity for dynamic loading 
and caching of models in accordance with the serving workload.

Memory Usage. To further investigate the impact of such workload 
characteristics on resource usage, we show potential memory usage in 
Fig.  2 based on some reasonable assumptions. We process the Azure 
trace in three steps: (1) We categorize functions into buckets according 
to the quantiles of their popularity, repeating this process multiple 
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Fig. 1. Traffic distribution of Azure trace.
Fig. 2. Memory requirement. The amount of memory required increases faster than the number of requests per second.
times with the number of buckets varying from 1 to 200. For example, 
when the number of buckets is set to 10, functions are divided into ten 
groups based on their popularity distribution. (2) From each bucket, 
we randomly select one function for each grouping and then sum 
the number of requests per second. (3) We repeat this process 100 
times and calculate the average requests per second to ensure data 
consistency. For this analysis, we assume that each function requires 
1 GB of memory. Subsequently, we plot the scatter plot in Fig.  2, 
with the required memory (i.e., the number of functions) as the 𝑋-axis 
data and the average requests per second of functions as the 𝑌 -axis 
data. As illustrated in Fig.  2, even with memory usage increasing to 
200 GB, the typical requests per second remain below 15. This indicates 
that in order to align with the request volume targeted by the MLPerf 
inference benchmark (Reddi et al., 2020), it would be necessary to host 
and maintain 200 individual models concurrently in memory. Hosting 
such a substantial number of models will hinder any single model from 
achieving computational saturation.
4 
3.2. Execution and loading time comparison

When a model cache miss occurs, the targeted model needs to be 
completely loaded into memory before it can be executed, akin to a 
cold start. We thus use the cold start latency to simulate inference 
latency with a model cache miss. For latency measurement, we bench-
mark 9 Convolutional Neural Network (CNN) models available within 
Keras (Anon, 2025g), with model sizes ranging from a few MBs to 
hundreds of MBs. We directly count the time from load and execution 
actions for each model. For hosting each model, we employ a con-
tainerized TensorFlow Serving (Olston et al., 2017) instance running 
on an NVIDIA V100 GPU. To minimize execution time and highlight 
the potential dominance of loading time in overall latency, we submit 
inference requests with a batch size of 1 from simulated clients to 
TensorFlow Serving. We execute 20 load-and-unload cycles for each 
model, with 10 executions per cycle, and then calculate the average 
loading time and execution time, respectively.
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Fig. 3. The overall inference latency component proportions.
Table 2
Inference latency statistics of representative CNN models. Inference latency breakdown comprises execution time and loading 
time.
 Model Execution time (ms) Loading time (ms) Size (MB) 
 MobileNetV1 0.25 16.0 131.8 1.9  
 MobileNetV1 0.5 16.3 147.5 5.2  
 MobileNetV1 0.75 17.4 172.7 10.5  
 MobileNetV1 1.0 17.5 209.6 17.1  
 DenseNet 30.8 586.3 43.9  
 InceptionV3 34.7 1010.6 95.7  
 InceptionResNetV2 47.4 1476.3 121.6  
 InceptionV4 51.5 1642.3 171.2  
 NASNetLarge 70.0 3702.3 356.6  
We profile the overall model inference latency and present its 
component proportions in Fig.  3. This figure demonstrates that the 
loading time is significantly greater than the execution time, thereby 
predominating the overall inference latency for all models. The loading 
time can vary from hundreds of milliseconds to several seconds, as 
detailed in Table  2. This observation is consistent with expectations, as 
loading time is affected by the speed of transferring model parameters 
from persistent storage, such as a disk, to RAM, and then to GPU 
memory. The speed of this transfer primarily depends on the inherent 
connection (e.g., PCIe) between the CPU and GPU, leaving limited room 
for optimization. Therefore, it is advisable to minimize model reloading 
and instead, retain frequently used models in GPU memory.

4. mCache: Model-level in-memory caching

Our study in the previous section highlights the potential for en-
abling fundamental model locality in DL inference serving. In this 
section, we discuss the challenges and design of mCache, followed by 
its caching algorithm.

4.1. Challenges

Our goal is to achieve a model-level in-memory caching system 
that treats each DL model as a cacheable object. Similar to tradi-
tional caching systems such as Content Delivery Network (CDN), model 
caching also employs a multi-level cache hierarchy. For instance, mod-
els can be stored in GPU memory or persistent storage such as local 
5 
disks or remote model repositories. However, model caching poses 
several challenges to effectively cache model items compared to these 
traditional caching systems.

First, cache miss penalty. DL model cache misses need to be handled 
differently. In the case of model caching, when a cache miss occurs, 
the requested model must be entirely loaded into the top-level cache 
(i.e., GPU memory) before execution. This loading process can take 
from hundreds of milliseconds to several seconds. If the top-level cache 
is already full, a model eviction decision needs to be made based on 
relevant factors. This differs from other caching systems like CDNs, 
where the requested object can be read from any cache level and does 
not necessitate being fully loaded into the higher-level cache before 
serving the request (Berger et al., 2017).

Second, variable model size. Caching fixed-size objects in traditional 
caching systems simplifies resource management since they are aware 
of memory space requirements in advance and can allocate equivalent 
memory sizes for objects in all cache levels. However, the memory 
space requirements of DL models typically vary widely based on their 
sizes.

Third, dynamic access patterns. The serving workload is not static 
but dynamic. In the cloud environment, for example, due to the un-
predictable nature of inference request arrivals (Zhang et al., 2019), 
perfectly preloading the targeted model is often not feasible. This poses 
significant challenges in maintaining a high model cache hit ratio and 
achieving the desired serving throughput.
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Fig. 4. The logical architecture overview of mCache.
In summary, these challenges can be summarized as the high cache 
miss penalty and variable memory space requirements during DL infer-
ence serving, particularly in the presence of dynamic access patterns. 
These challenges guide the design of our importance-aware model 
caching algorithm.

4.2. System overview

mCache is a novel caching system built upon DL serving framework 
to enable model cacheability for inference service. Within mCache, the 
models are cached in GPU memory and executed with given inputs 
to provide consistent response times for invocation requests from end-
users. For the initial inference, the cache manager fetches the models 
from persistent storage and populates the cache with the models to 
be accessed first. Upon receiving the required model list, the cache 
manager checks whether each model resides in the cache. Assuming 
the cache is full and the requested model is not found in the cache 
(cache miss), our importance-aware model caching algorithm will evict 
the least important model previously cached to make space for the 
newly requested model. Specifically, the algorithm uses a min heap-
based importance queue and shadow cache to track the models along 
with their associated importance score. The heap objects are key–value 
pairs, where the key represents the importance score, and the value is a 
reference to the model item in the cache. These objects in the heap are 
sorted based on their importance score, with the topmost object being 
referred to as the top-node. When the cache is full, the least important 
model at the top of the heap is evicted to make room for the incoming 
model. By keeping the most important models in the GPU memory 
cache, mCache ensures a good cache hit ratio. Fig.  4 illustrates the 
single-node logical architecture of mCache along with its components.
6 
4.3. Caching algorithm

4.3.1. Problem definition
We next describe the definition of model caching problem, with 

an emphasis on determining which in-memory model(s) to evict to 
serve incoming inference requests. Our objective is to minimize cache 
miss penalty — the performance overhead incurred when processing 
an inference request that requires loading a non-resident model into 
memory.

At a given time, assume there is a need for a set of models 𝐼 to be 
hosted in a serving system. Let 𝐶 and 𝐸 denote the set of cached models 
in GPU memory and the set of models awaiting eviction, respectively. 
Let 𝑆 denotes the model size in memory. For example, 𝑆𝑖 represents 
the memory usage of model 𝑖 ∈ 𝐼 , 𝑆𝑐 represents the memory usage of 
model set 𝐶. Let 𝑇  be the total capacity size of the cache (i.e., GPU 
memory). Only a proper subset 𝐶 ⊂ 𝐼 of models can be stored in 
the cache simultaneously. For each incoming invocation request, the 
objective is to form an eviction set 𝐸 such that 𝑇 − (𝑆𝐶 − 𝑆𝐸 ) ⩾ 𝑆𝑖, 
i.e., to evict enough models to accommodate a new incoming model 
𝑖. Note that the eviction set 𝐸 is a subset of 𝐶, and 𝐸 may consist of 
either no models or multiple models.

To identify candidates for eviction set 𝐸, a specialized metric is 
needed to characterize in-memory model items. Unlike traditional 
caching algorithms (e.g., LRU and LFU), where eviction candidates 
are selected based on recency or frequency pattern, in model caching, 
additional factors such as model size must be considered. We therefore 
propose model utility, a novel evaluation metric designed to assess and 
prioritize models for optimal cache allocation.
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4.3.2. Model utility
Model caching requires targeted objects to be preloaded in the 

memory before execution, which means that the impact of cache misses 
on inference performance cannot be ignored. To this end, model utility 
is designed to take into account both cache access patterns and cache 
miss penalty. Its definition can be described as follows: 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑖) =
𝑃𝑖
𝑆𝑖

⋅
1
𝑇𝑖

(1)

where 𝑃𝑖 denotes the cache miss penalty of model 𝑖, which is equivalent 
to the cold start-related latency overhead. 𝑆𝑖 denotes the memory usage 
of model 𝑖, and 𝑇𝑖 denotes the time to the next incoming invocation 
request for model 𝑖. Here, 𝑃𝑖 and 𝑆𝑖 could be obtained using offline 
performance testing and profiling. For each model 𝑖, we predict its 
next request arrival time 𝑇𝑖 using its invocation history. Specifically, 
we estimate the request rate 𝛥𝑖 via a sliding-window or exponentially 
weighted moving average, ensuring the calculation reflects recent traf-
fic trends. Similar modeling approaches have been adopted in prior 
works (Sriraman and Wenisch, 2018; Zhang et al., 2020). The serving 
interval is then approximated as 𝑇𝑖 ≈ 𝑇 ′ = 1

𝛥𝑖 . This approximation 
is reasonable, as user requests typically occur independently and un-
predictably, particularly when initiated by a large number of users 
operating asynchronously. Such behavior results in random request 
arrivals over time, with inter-arrival times that inherently follow an 
exponential distribution. These are defining characteristics of a Poisson 
process, which is commonly adopted as a workload model in related 
studies (Strati et al., 2024; Zhong et al., 2024; Chen et al., 2025).

The design of model utility is based on a key insight: when a model 
is evicted from the cache, it will be reloaded in the future. Essentially, 
the utility of a model is conceptualized as the opportunity cost occurred 
as if it were not evicted by choosing to remove another in-memory 
models with a lower utility. By accounting for both the amortized cache 
miss penalty and the potential cache residency duration, we develop a 
standardized metric for cross-model comparison. As the composition 
of the utility definition shows, it balances the need to keep a high-
penalty but small models in the cache through 𝑃 𝑖∕𝑆𝑖, and reduces the 
number of reloading models simultaneously through 𝑇𝑖. The longer it 
takes for a model to be re-requested, the more time we can spread 
out the penalty of a cache miss, resulting in a lower utility. This 
intuitive relationship arises from the constant penalty and size, which 
are inherent to hardware configuration and model parameters. As a 
result, the 𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑖) decreases monotonically with the increasing time 
until the next request for model 𝑖.

4.3.3. Rank-based importance score
While per-model utility provides a straightforward metric for quan-

tifying individual model importance, it fails to capture each model’s 
contribution to overall system throughput. The relative rankings enable 
mCache to prioritize the highest-importance models currently in mem-
ory. To quantify each model’s contribution more precisely, we develop 
a log-based ranking method, as formalized in Eq.  (2): 

𝑟𝑎𝑛𝑘𝑖 = 𝑙𝑜𝑔(
𝐶
∑

𝑗=1,𝑗≠𝑖
𝐹 (𝑢𝑖 > 𝑢𝑗 ) + 𝑏0) (2)

The rank-based importance score for the 𝑖th model in the GPU 
memory cache containing 𝐶 models is denoted by 𝑟𝑎𝑛𝑘𝑖. 𝑢𝑖 and 𝑢𝑗
denote the utility for the 𝑖th and 𝑗th model, respectively. The term 𝑏0
serves as a bias to adjust the range of ranks on a logarithmic scale. 𝐹
is an indicator function that returns a value of 1 when the condition 𝑢𝑖
> 𝑢𝑗 is true, and 0 otherwise. For each 𝑗 item in cache, this condition 
assists in placing each model in the proper rank. Models with a smaller 
utility are assigned a lower rank and are considered more suitable 
candidates for eviction.

A challenge in applying importance scores lies in their dynamic 
nature — these scores continuously evolve with the inference work-
load, resulting in fluctuating cache hit ratios. To tackle this challenge, 
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mCache implements periodic updates of the importance scores. To 
avoid the overhead of constructing a heap-based queue, we opt not to 
update the importance queue (IQ) in place. Instead, a shadow cache 
with the same structure as the IQ is maintained. After importance 
updates, the IQ becomes read-only and is utilized only for eviction, 
while changes are recorded in the shadow cache. Once the shadow 
cache is fully rebuilt, it becomes a new IQ and the original one is 
released. This approach allows for asynchronous update of importance 
scores in the heap-based queue and does not affect the model swapping 
process.

4.3.4. Importance-aware model caching
When the requested model items are not present in cache, the cache 

manager needs to fetch them from persistent storage. Furthermore, 
it must decide whether to evict the model item when the memory 
cache reaches its capacity. One challenge is that commonly used LRU-
like cache replacement algorithms do not work effectively in model 
management for DL inference serving, as they fail to consider model 
priority. Hence, there is a need for a cache replacement algorithm 
that takes model importance into consideration, thereby improving the 
cache hit ratio during model serving.

The high-level algorithm for the Importance-Aware Model (IAM) 
cache management is outlined in Algorithm 1. Specifically, in case 
of a cache miss and the cache is not full, the model item read from 
persistent storage is directly inserted into cache. IAM then creates a 
corresponding heap object for the model item and adds it to the heap. 
When insufficient cache space is available for an incoming model, 
IAM iteratively evicts the model item at the top of the heap-based 
importance queue (IQ) that possesses the smallest importance score. 
This eviction process continues until enough space is freed up within 
the cache. Following this, IAM then generates a new heap object 
corresponding to the incoming model and inserts it into the heap.
Algorithm 1 Importance-Aware Model (IAM) Caching Algorithm
Require: 𝐼𝑄: Importance queue for currently-cached models.
1: while  request model 𝑖 for serving  do
2:  // Calculate rank-based importance score based on Equation (1) 
and Equation (2)

3:  𝑟 = 𝑟𝑎𝑛𝑘(𝑖)
4:  if 𝑐𝑎𝑐ℎ𝑒_ℎ𝑖𝑡 then
5:  𝑐𝑎𝑐ℎ𝑒.𝑔𝑒𝑡(𝑖)
6:  else if 𝑐𝑎𝑐ℎ𝑒_𝑚𝑖𝑠𝑠 and 𝑐𝑎𝑐ℎ𝑒_𝑛𝑜𝑡_𝑓𝑢𝑙𝑙 then
7:  // Insert this model item into the cache and IQ
8:  𝑐𝑎𝑐ℎ𝑒.𝑖𝑛𝑠𝑒𝑟𝑡(𝑖)
9:  𝐼𝑄.𝑠𝑒𝑡(𝑟, 𝑖)
10:  else
11:  while cache_free_size < size(i)  do
12:  // Find the model item with the minimal score in the 

cache
13:  𝑚𝑖𝑛_𝑟𝑎𝑛𝑘, 𝑚𝑖𝑛_𝑖𝑡𝑒𝑚 = 𝐼𝑄.𝑚𝑖𝑛()
14:  // Evict the least important model item from cache
15:  𝑐𝑎𝑐ℎ𝑒.𝑒𝑣𝑖𝑐𝑡(𝐼𝑄.𝑝𝑜𝑝(𝑚𝑖𝑛_𝑖𝑡𝑒𝑚))
16:  end while
17:  𝑐𝑎𝑐ℎ𝑒.𝑖𝑛𝑠𝑒𝑟𝑡(𝑖)
18:  𝐼𝑄.𝑠𝑒𝑡(𝑟, 𝑖)
19:  end if
20: end while

Theoretically, the importance-aware model caching algorithm is 
expected to demonstrate superior performance in comparison to tradi-
tional LRU-like algorithms exploiting temporal locality. Let us take Fig. 
5 as an example, with a cache capacity of three and three consecutively 
cached model items (#1, #2, #3), when item #4 is accessed, the 
LRU-like replacement algorithm will evict item #1 since it is the least 
recently used, as shown in Fig.  5(a). However, assuming item #2 has 
the lowest importance score and is the top-node in the heap, there 
is a higher likelihood of accessing #1 than #2 in future references. 
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Fig. 5. The comparison of LRU and mCache. The squares in darker color represent models with higher importance score.
Therefore, evicting model #2 would lead to a higher cache hit ratio, 
as shown in Fig.  5(b).

5. Implementation

mCache is developed upon TensorFlow Serving and comprises
around 2500 lines of Go code. It intercepts both HTTP as well as gRPC 
inference calls from client applications, requiring no modifications to 
the underlying TensorFlow Serving framework (Olston et al., 2017). 
When a model is requested, mCache proceeds to identify a TensorFlow 
Serving service that will serve the model. If the model is loaded and 
ready, the request will be forwarded directly to the TensorFlow Serving 
for execution. Otherwise, mCache will fetch it from the persistent 
storage and load it into TensorFlow Serving while unloading models 
based on the proposed IAM caching algorithm, before it forwards the 
request to TensorFlow Serving.

mCache implements the cache manager as a wrapper that encapsu-
lates the IAM caching algorithm. Cache manager uses a key–value store 
to manage models in cache. The key denotes model ID and the value 
stores the data item of a model. In addition to supporting standard one-
sided operations such as lookup, get, and put, the cache manager also 
provides an interface for periodically updating the model’s importance. 
mCache is designed for easy deployment—it runs as a Docker container 
and can be managed efficiently using container orchestration systems 
like Kubernetes (Luksa, 2017).

6. Evaluation

This section evaluates our mCache system. We first describe our ex-
periment setup, then analyze the performance of mCache and compare 
its IAM caching algorithm with other caching algorithms.

6.1. Experiment setup

Testbed. Our testbed is deployed on an inference server with two 
Intel Xeon Silver 4210R × 10 Core Processors, 64 GB DRAM, one 
NVIDIA V100 GPU (16 GB memory). The GPU is powered by Nvidia 
driver 470.103, CUDA 11.4, and cuDNN 8. NVIDIA Docker is leveraged 
to provide containers. We serve the DL models using containerized 
Tensorflow Serving (Olston et al., 2017) on the server and place the 
model files in the remote storage provided by an HDD-based NFS 
server.

Inference models. We conduct our experiments on several represen-
tative computer vision (CV) and natural language processing (NLP) DL 
models, namely, ResNet50 (He et al., 2016), SSD (Liu et al., 2016), 
BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2021), XLNet (Yang 
et al., 2019), GPT-2 (Radford et al., 2019), T5 (Raffel et al., 2020). 
Requests for CV model services use a picture that is 600 × 600 pixels 
in size, and NLP model services use a short query of 20 words. These 
models, which vary in size from hundreds of MB to several GB, are 
wildly utilized across multiple tasks, including image classification, 
object detection, translation, text generation and question answering. 
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All these models are obtained from Hugging Face Model Hub (Anon, 
2025f).

Inference workload. There does not exist an open-source production 
DL inference trace to the best of our knowledge. Therefore, following 
the practice of prior studies (Lv et al., 2025; Strati et al., 2024; Zhao 
et al., 2023; Li et al., 2023; Zhang et al., 2023), we derive the inference 
workload from the Azure function trace (Shahrad et al., 2020). The 
trace consists of service statistics and invocation counts for each minute 
of the 24 h period. We present a three-step methodology for generating 
a request-level workload from the trace as follows: (1) Generate a list 
of service invocation events to indicate when the service is invoked. We 
count the number of invocations to each service in the trace and dis-
tribute them in a random order across the specified time (e.g., 10 min) 
based on their invocation frequency. In order to match the characteris-
tics of Azure traces with DL workloads, we only count services triggered 
by HTTP requests since they are likely to be invoked by end-users. 
In addition, we remove services whose popularity quantile is higher 
than the 90th. We do this because trendy models typically remain in 
GPU memory and benefit less from model caching optimization. (2) 
Associate inference models with service invocation events. We pair 
models with service invocations to introduce the correlation between 
the two. The existing characteristics of the service invocations in the 
trace, such as allocated memory and execution duration, are inaccurate 
to match DL models. Thus, we choose one of the 7 DL models for each 
service in four ways: First, Random. This approach randomly selects 
one of the available models as the inference model for the service. 
Second, Round-robin. This approach first sorts the models in order of 
decreasing loading time and then selects the model in a round-robin 
manner. Third, Quantile. This approach selects the model based on 
the popularity quantile of the service and hence introduces a positive 
correlation between the popularity of a service and the loading time 
penalty; that is, models with high loading time are selected for services 
with high popularity. Fourth, Quantile-r. Contrary to the quantile ap-
proach, this approach reverses the correlation; that is, models with low 
loading time are selected for services with high popularity. (3) Down 
sample the service invocation events to an appropriate level. One hour 
of requests is extracted from the Azure trace, which is down sampled 
by 15%, including around 2389 requests. These requests are distributed 
across 7 models with 4 different correlations, allowing us to test a wide 
range of workload variations.

6.2. Analysis of mCache’s performance

6.2.1. Average inference latency
We first present the average inference latency for the seven models 

serving with different workload characteristics. In this context, the 
inference latency is measured from the moment a request is sent to 
the server until the corresponding response is received. We have two 
observations from Fig.  6.

First, different workloads have significantly different results in aver-
age inference latency. As shown in the figure, the random and quantiles 
workloads consistently represent the uppermost and lowermost points 
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Fig. 6. Comparison of average inference latency under different workload characteristics. Percentages denote the proportion of GPU memory used as cache.
in most cases, respectively. Their difference comes from the correlation 
between model load penalty and popularity. For random workload, it 
is relatively more difficult to determine the best candidate for model 
eviction due to its inherent unpredictability, leading to a larger in-
crease in inference latency as cache size decrease. Meanwhile, the 
quantiles workload consists of high-penalty and high-popularity models 
and hence contributes to reducing the cache miss ratio for frequently 
used high-penalty models. Note that the quantiles workload encounters 
exceptionally high latency at 20% of cache size. This is because the 
cache space is too small to accommodate multiple large-sized models. 
As a result, frequent model swapping occurs, leading to huge model 
load delays and prolonging average inference latency.

Second, different workloads exhibit distinct sensitivities to changes 
in the budgeted cache space. An encouraging finding is that our mCache 
reacts smoothly to the reduction in cache space, particularly for quan-
tiles and quantiles-r workloads exhibiting correlation between model 
load penalties and access popularity. Specifically, nearly half memory 
savings are attained in these workloads with only modest average infer-
ence latency increase. However, for other workloads, mCache responds 
gracefully only to the initial reduction of cache space. For cache sizes 
lower than 60%, the workloads have a stronger influence on latency 
performance, leading to significant performance degradation.

6.2.2. Inference latency breakdown
In our next experiment, we break down overall inference latency 

into two components: model loading time and the other (model execu-
tion time and client–server communication latency). We then present 
the proportion of the dominating component — model loading time.

Fig.  7 shows how the percentages of the loading time changes 
over cache size for four different workloads. Similar to the finding 
in previous experimental study, we observe that the loading delay of 
models dominates overall inference latency in most cache sizes for 
each workload. As the cache sizes decrease, the proportion of loading 
time to the overall latency increases across all workloads. Specially, 
in the quantiles workload, the loading time percentage experiences 
a significant surge, increasing from 8% to 98%, as the cache size 
decreases from 80% to 20%. This phenomenon corresponds to the sharp 
incline observed in the quantiles workload’s curve in Fig.  6. The rise 
in loading time in percentage indicates the considerable challenge of 
accurately caching high-penalty targeted models within a smaller cache 
space. For a cache size of 100%, note that we do not report model 
loading time, since all models can be simultaneously loaded into the 
GPU memory.
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6.2.3. Loading time CDF
When a cache miss occurs, the model load delay is introduced, 

prolonging the inference latency. Thus, we further evaluate the cumu-
lative distribution function (CDF) of model loading time, which helps 
demonstrate the extent of inference latency degradation due to model 
caching. Fig.  8 illustrates the model loading time CDF for four different 
workloads. As shown in figure, for up to 90% of inference requests, 
the model loading time remains below 10 s and 3 s for both 40% and 
80% cache sizes across all workloads, respectively. This result implies 
that adopting model caching techniques can be beneficial in reducing 
memory footprint when users are willing to trade off some inference 
latency performance to cut costs. Additionally, we notice that the CDF 
displays a long tail in both Fig.  8(a) and Fig.  8(b), indicating that 
certain inference requests encounter prolonged response times. The 
reason for the long tail in the CDF is attributed to newly targeted 
models with high penalties experiencing cache misses, resulting in 
significant model load delays. Thus, improving the cache hit ratio for 
these models presents a promising direction for future research. Based 
on the results above, we argue that model caching is indeed feasible in 
practical DL inference serving, especially when their cache miss penalty 
is moderate.

6.3. Comparison with other algorithms

Previously we demonstrated how well mCache can perform under 
four difference workload characteristics. We next compare the ability 
of mCache’s IAM to manage cached model replacement in GPU memory 
against several generic cache replacement algorithms used as baselines. 
These include LRU, a temporal locality-aware algorithm employed in 
prior studies (Gujarati et al., 2020; Cox et al., 2020; Zhao et al., 2023; 
Dakkak et al., 2019), and LFU, a frequency locality-aware algorithm 
used in other works (Anon, 2025b). Additionally, we also implement 
two advanced hybrid locality-aware algorithms for further comparison, 
namely ARC (Megiddo and Modha, 2003) and SRRIP (Jaleel et al., 
2010). For fair comparison, we evaluate the model cache hit ratio with 
random workload characteristic, since this workload does not favor any 
specific caching algorithm and is common in a real-world production 
environment. In summary, the compared baselines are as follows:

• Least Recently Used (LRU), which removes the least recently used 
item when the cache is full, assumes that items accessed recently 
are more likely to be used again in the near future.

• Least Frequently Used (LFU), which removes the least frequently 
used item when the cache is full, assumes that items with lower 
access frequencies are less likely to be accessed again.
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Fig. 7. The proportion of average loading time to the overall latency under different workload characteristics. Percentages denote the proportion of GPU memory used as cache.
Fig. 8. Model loading time CDF at 40% and 80% of cache sizes under different workload characteristics.
• Adaptive Replacement Cache (ARC), which keeps track of both 
frequently used and recently used items plus a recent eviction 
history for both, aims to strike a balance between LRU and 
LFU algorithms and efficiently adapt to changing access pat-
terns, resulting in improved cache hit rates and overall system 
performance.

• Static Re-Reference Interval Prediction (SRRIP), which provides 
good scan resistance while also allowing older cache items that 
have not been reused to be evicted. By assigning a Re-Reference 
Prediction Value (RRPV) to each cache item, SRRIP tracks the 
likelihood of reuse, incrementing RRPVs for cache misses and 
evicting the item with the highest RRPV value, ensuring efficient 
cache utilization and eviction of less-referenced item.

6.3.1. Cache hit ratio
Fig.  9 presents the average hit ratios while serving seven DL mod-

els at different cache sizes under a random workload characteristic. 
Notably, all caching algorithms exhibit a considerably low hit ratio 
at a cache size of 20%. This low hit ratio serves as an indicator of 
thrashing, wherein models are frequently being unloaded and loaded 
due to insufficient cache space to effectively accommodate the working 
set of models. However, as the capacity size of the cache increases, 
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the hit ratio shows a gradual improvement. We further compare IAM 
with other caching algorithms at each cache size. We find that IAM 
indeed improves the cache hit ratio, e.g., by about a half compared 
to other caching algorithm at the cache size of 40%. The reason for 
the improved hit rate is that IAM has foreknowledge of the upcoming 
requests, and hence it can more accurately select which models to evict. 
However, as the cache size increases, the outperformance of IAM over 
the other caching algorithms shrinks because there is more cache space 
to accommodate newly targeted models. In conclusion, by ensuring 
a higher hit ratio with limited available cache space, mCache holds 
effectively more model in the limited cache space, therefore achieving 
higher GPU resource efficiency for DL inference serving.

6.3.2. Throughput
In our next experiment, we access the throughput of mCache un-

der random workload, which serves to demonstrate the superiority 
of mCache in efficiently processing inference requests with a limited 
cache space. Fig.  10(a) shows that IAM has around 1.5 times better 
throughput compared to baseline LFU algorithm at 40% of cache size. 
In the experiment with 80% cache size, as shown in Fig.  10(b), IAM 
demonstrates a significantly higher throughput, approximately 2.39 
times better than the baseline LFU algorithm. Similar observations 
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Fig. 9. Comparison of model cache hit ratio of various caching algorithms and cache sizes under random workload. IAM denotes the caching algorithm used in our proposed 
mCache system. Percentages denote the proportion of GPU memory used as cache.
Fig. 10. Comparison of throughput of different caching algorithms at 40% and 80% of cache sizes using a random workload.
are made for other cache sizes, showcasing the consistent throughput 
improvement of IAM. Remarkably, IAM maintains its superior perfor-
mance even when compared to the superior SRRIP algorithm. The 
improvement in the ability to process more requests is because the 
IAM algorithm is optimized for throughput by targeting the hosting 
of high-importance models. Consequently, IAM experiences reduced 
model swapping, especially for high-penalty models, which in turn 
frees up more time for model execution, enabling faster processing of 
requests compared to other algorithms.

6.3.3. Model loading time
A core goal of the caching algorithm is to minimize the delay of 

memory access, which is referred to as model loading time in this 
context. In this set of experiments, we evaluate the performance gain 
achieved in model loading time.

Table  3 presents the comparison of different caching algorithms 
in terms of their ability to reduce the average model loading time 
under random workload characteristic. As we can see in the table, 
IAM achieves the lowest mean model loading time, demonstrating 
5.96, 4.21, and 1.68 s across cache space of 40%, 60%, and 80%, 
respectively, and is equivalent to 27%, 43% and 62% improvements 
against LFU baseline, respectively. This indicates that the larger the 
cache size, the greater the advantage of IAM over LFU in optimizing 
model caching and achieving faster loading time. We also note a big gap 
between LFU and other algorithms in terms of model caching gains in 
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reducing loading time, while their cache hit ratio exhibits relatively mi-
nor difference, as shown in Fig.  8. This phenomenon is attributed to the 
LFU algorithm’s tendency to evict model items with the lowest access 
frequency. Moreover, in scenarios characterized by random workload, 
there is typically a lower rate of access to high-penalty and large-sized 
models, rendering them less frequently used and thus more susceptible 
to eviction by the LFU algorithm. Consequently, when less frequently 
accessed high-penalty models are evicted, the process of reloading them 
incurs a non-negligible time delay, often ranging from several times to 
ten times longer than that of other models. In contrast, IAM is aware 
of the penalty of reloading models, prioritizing the retention of high-
penalty models in memory. As a result, IAM outperforms LFU and other 
caching algorithms primarily due to its awareness of model penalty and 
size, leading to more effective caching decisions. 

7. Discussion

Heterogeneity of GPUs. Our solution inherently supports the use of 
heterogeneous GPUs for model caching. It only requires running the 
same profiling procedure for each unique GPU type, and applying the 
profiled parameters 𝑃𝑖 and 𝑆𝑖 in the proposed caching algorithm.

Usability. Our solution is built upon the commonly used deep learn-
ing serving frameworks, and users do not need to make any changes 
to their code. To enable automatic model loading and unloading, our 
solution introduces only minor, user-transparent modifications to Ten-
sorFlow Serving’s model configuration file. Additionally, our proposed 
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Table 3
Model loading time statistics with random workload.
 Cache Algorithm Avg. (s) Gain 
 

40%

LFU 8.20 –  
 LRU 6.93 15% 
 ARC 6.36 22% 
 SRRIP 6.32 23% 
 IAM 5.96 27% 
 

60%

LFU 7.35 –  
 LRU 5.48 25% 
 ARC 4.89 33% 
 SRRIP 4.74 36% 
 IAM 4.21 43% 
 

80%

LFU 4.38 –  
 LRU 2.57 41% 
 ARC 2.23 49% 
 SRRIP 2.01 54% 
 IAM 1.68 62% 

importance-aware caching technique for multi-model collocation infer-
ence and the Cache Manager implementation can be adopted by other 
serving frameworks (e.g., TorchServe (Anon, 2025k), Bentoml (Anon, 
2025c)) to enhance their GPU-based inference performance.

Deployment Scenario Limitations. Multi-model collocation infer-
ence is ideal for hosting a large number of models that use the same 
ML framework on a shared serving container. When workloads involve 
mixed access patterns (i.e., frequent requests to popular models and 
sporadic requests to less popular ones), our model-cacheable inference 
solution can efficiently serve this traffic with fewer resources and 
higher cost savings, particularly when the models are fairly similar 
in size and invocation latency. However, DL applications should be 
tolerant of cold-start latency penalties when invoking infrequently used 
models. For applications with substantially higher transactions per 
second or latency requirements, dedicated serving containers remain 
the preferable option.

8. Conclusion

The GPU memory capacity is a major bottleneck in DL inference 
serving when multiple models collocate in a single GPU. To address 
this bottleneck, we present mCache, a novel caching system specifi-
cally designed for DL inference serving that aims to reduce memory 
footprint for collocation inference. mCache realizes an importance-
aware caching algorithm that leverages importance scores to dynam-
ically manage models in GPU memory, thereby enabling fundamen-
tal cacheability for inference serving systems. Experiments show that 
mCache reduces memory footprint with a modest increase in inference 
latency, and improves throughput by up to 1.5× and 2.39× given 
the 40% and 80% GPU memory capacity compared to similar serving 
system using LFU caching algorithm. As MaaS become more and more 
popular, we hope mCache will inspire the next generation of memory 
cache system designed for DL inference serving.
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