
Engineering Applications of Artiϧcial Intelligence 160 (2025) 111908

A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Enable importance-aware model cacheability for inference serving
Hao Mo a, Didier El Baz b, Ligu Zhu a, Suping Wang a, Songfu Tan a, Hongning Zhao a, Lei Shi a,∗
a State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, 100024, China
b LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, 31031, France

A R T I C L E I N F O

Keywords:
Deep learning
Inference serving
Replacement algorithm
Memory cache

 A B S T R A C T

 Inference serving systems are leveraged to deploy deep learning (DL) models as services. Accelerators such as
Graphics Processing Units (GPUs) have been extensively used in these systems to reduce model execution time.
As accelerators become more powerful and expensive, GPU sharing among DL models across different inference
requests is a common practice. However, GPU memory capacity becomes a bottleneck when the number of
collocated models increases, making this approach unsustainable. At the same time, collocated models may
vary in popularity levels — some are accessed frequently and others are not, leading to low resource efficiency
and system performance. While some existing inference serving systems offer the capability to dynamically load
and cache model in memory, they are typically locality-aware and exhibit poor performance for DL inference
serving.

To this end, we present mCache, a novel inference serving-oriented caching system to dynamically manage
a set of collocated models with diverse popularity for efficient use of memory. mCache treats each DL model
as a cacheable object, and loads model on demand and unloads models when not in use. Rather than using
recency or frequency, we manage models in GPU memory based on rank-based importance scores, which jointly
consider cache access patterns and model-specific factors, serving as a unified metric to compare different
models. During model serving, the importance scores of cached models are dynamically updated, and the
least important model is evicted to make room for a newly targeted model when the cache is full. Evaluation
with representative DL models shows that mCache reduces memory footprint by nearly a half with a modest
inference latency increase. Compared to existing serving system using Least Frequently Used (LFU) caching
algorithm, mCache improves throughput by up to 1.5× and 2.39× given the 40% and 80% GPU memory
capacity.
1. Introduction

Model as a Service (MaaS) is an increasingly popular deep learning
(DL) inference serving paradigm. Many cloud providers such as Google
Cloud (Anon, 2025e) and Amazon (Anon, 2025a) offer MaaS as an
interface to usage-driven back-end services. MaaS provides an intuitive
interface for developers to deploy DL model prediction services. In
contrast to traditional cloud interfaces, in MaaS, developers do not
explicitly provision or configure virtual machines (VMs) or containers.
Instead, developers simply upload their DL model applications to the
cloud; models get executed when applications are ‘‘triggered’’ or ‘‘in-
voked’’ by end-users, for example, the receipt of a message (e.g., an
HTTP request). The cloud provider is then responsible for providing the
required resources (e.g., container instances) for executing each model.

Obviously, cloud providers seek to deliver contractual-compliant
DL inference performance at the lowest possible resource cost. To

∗ Corresponding author.
E-mail addresses: haroldmua@cuc.edu.cn (H. Mo), elbaz@laas.fr (D. El Baz), zhuligu@cuc.edu.cn (L. Zhu), supingwang@cuc.edu.cn (S. Wang),

tsf@cuc.edu.cn (S. Tan), zhaohongning@cuc.edu.cn (H. Zhao), leiky_shi@cuc.edu.cn (L. Shi).

achieve this, some works have explored cluster-level techniques, such
as autoscaling (Romero et al., 2021; Tang et al., 2019; Zhang et al.,
2019; Mo et al., 2023) and scheduling (Mendoza et al., 2021; Tan et al.,
2021; Wang et al., 2021; Wu et al., 2020) for DL inference jobs. These
techniques are useful because DL inference service is compute-intensive
and typically requires multiple Graphics Processing Unit (GPU) accel-
erated instances to serve in parallel. Another commonly used approach
is to collocate inference jobs on the same GPU so their models can
share the compute resource, which is our concern in this work. Most
existing studies on collocation optimization have focused on techniques
such as operator scheduling (Ding et al., 2021; Yu et al., 2021), service
router (Choi and Rhu, 2020; Mendoza et al., 2021; Wu et al., 2020;
Soifer et al., 2019), resource partitioning (Anon, 2025h; Dhakal et al.,
2020; Ghodrati et al., 2020) to avoid job interference. However, two
challenges have received less attention: (1) memory limitation. GPU
https://doi.org/10.1016/j.engappai.2025.111908
Received 11 April 2024; Received in revised form 23 May 2025; Accepted 28 July
vailable online 9 August 2025
952-1976/© 2025 Elsevier Ltd. All rights are reserved, including those for text and
2025

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
mailto:haroldmua@cuc.edu.cn
mailto:elbaz@laas.fr
mailto:zhuligu@cuc.edu.cn
mailto:supingwang@cuc.edu.cn
mailto:tsf@cuc.edu.cn
mailto:zhaohongning@cuc.edu.cn
mailto:leiky_shi@cuc.edu.cn
https://doi.org/10.1016/j.engappai.2025.111908
https://doi.org/10.1016/j.engappai.2025.111908

H. Mo et al. Engineering Applications of Artiϧcial Intelligence 160 (2025) 111908
memory capacity is limited and can only accommodate a small number
of models, hindering higher hardware utilization and cost efficiency.
(2) resource usage disparity. While GPU memory remains filled with
models during inference serving, computational utilization stays low
due to some models being infrequently accessed. Ideally, we want to
host as many models as possible on a single GPU, even if the total
memory demand of models exceeds the memory capacity, while giving
the illusion that all models are always warm (loaded in memory), yet
spend resources as if they are always cold (not loaded in memory).

We thus propose model-level in-memory caching, or model caching,
a novel approach to address these issues in collocation inference and,
more generally, improve the performance of cloud-based DL inference
serving. Model caching handles DL models as cacheable objects. Instead
of loading all of the targeted models in GPU memory at once, it
dynamically loads and unloads models into and out of memory based
on their usage patterns. Upon the arrival of an invocation request, the
serving system efficiently decides which models to retain in the cache
and which ones to remove based on request information and in-memory
model items, particularly when there is insufficient memory space. For
instance, if the requested model is already resident in memory, this
constitutes a cache hit. In that case, it is served faster since the serving
system does not need to reload it again. Otherwise, the invocation
represents a cache miss and experiences a longer response time owed
to model load delay.

A key challenge of model caching is to decide which model to evict
when the cache is full. A common practice is to determine the eviction
candidates using traditional caching algorithms like Least Recently
Used (LRU) or Least Frequently Used (LFU), based on the recency or
frequency of their use. For example, Amazon Web Services (AWS) Sage-
Maker (Anon, 2025b) uses LFU algorithm for cache replacement when
hosting multiple models in one container. However, these traditional
caching algorithms do not work effectively with model management
because they primarily target higher cache hit ratio, without consid-
ering a key feature of DL inference — loading models completely into
memory prior to being executed. As a result, a new cache replacement
algorithm is needed for model caching.

For this purpose, we design and implement mCache, a caching
system specifically designed for DL inference serving. mCache enables
model cacheability by introducing a rank-based importance score that
captures the priority of each model and designing an effective caching
algorithm based on the score. The importance score is calculated as
a uniform metric to compare DL models that are heterogeneous both
in terms of model size and loading time. The model with the smallest
importance score is the most suitable candidate for eviction. mCache
then uses these importance variations to make caching decisions during
DL inference serving. Based on these techniques, our caching solution
keeps the most important models in the cache and avoids random
evictions.

In summary, this paper offers the following key contributions:

• We introduce a novel importance calculation approach to iden-
tify the relative importance of in-memory model items for DL
inference serving.

• We design a cache replacement algorithm based on model impor-
tance to dynamically manage models in GPU memory.

• We present the design of mCache, a new caching system inte-
grated with the proposed algorithm to enable model cacheability
for inference serving system.

• We implement mCache using Tensorflow Serving as the under-
lying framework. We evaluate it under four different workload
characteristics and compare mCache against other caching meth-
ods. Our results show that mCache saves nearly a half memory
usage with a modest increase in inference latency in correlated
workload.
2
2. Background and related work

2.1. Deep learning inference serving

Deep learning inference serving is the process of deploying trained
deep learning models into a production environment to make predic-
tions on new, unseen data in real-time or batch mode. System design
must balance competing demands such as latency, throughput, and re-
source efficiency, depending on the use case. For instance, low-latency
inference (e.g., < 100 ms) is critical for interactive applications like
virtual assistants, while high-throughput batch processing suits offline
tasks like video analysis. The conventional approach to deploying DL
prediction services is to provision a container and, within the container,
host the DL model on a serving framework. The serving framework
is analogous to a webserver and exposes services with interfaces via
a REST API. For example, DL serving frameworks like TensorFlow
Serving (Olston et al., 2017; Anon, 2025j), TorchServe (Anon, 2025k)
and NVIDIA Triton (Anon, 2025i) host the model in a Docker (Anon,
2025d) container to enable process isolation and expose services via
HTTP or RPC protocols.

Since DL models mainly need to support user-oriented applica-
tions, DL inference serving generally has certain latency constraints,
which require queries to be served within a given latency. A practical
approach to accelerate model inference is to adopt DL-dedicated hard-
ware, such as GPU and TPU (Jouppi et al., 2017). This approach works
because DL models contain many complex computational operations,
such as matrix multiplication, which can be efficiently parallelized
using accelerators, significantly reducing execution time. Meanwhile,
given model prediction services’ scale and elastic scaling requirements,
serving systems are typically deployed in the cloud. Cloud providers
can then allocate a set of GPU-accelerated container instances and use
a resource manager such as Kubernetes (Luksa, 2017) to deploy and
manage the service.

2.2. Multi-model co-location inference

Multi-model co-location inference is a multi-tenant single-device
computing paradigm in which multiple DL models co-run on a single
high-performance hardware. The introduction of collocation inference
optimization is mainly due to the mismatch between the huge compu-
tational power of recent GPUs (e.g., NVIDIA A100 with 312 TFLOPS)
and the inference requirements of general DL models (e.g., ResNet50
model with 4 GFLOPs). Executing such a single DL model on a modern
GPU may lead to severe resource underutilization. Collocation infer-
ence thus offers a cost-efficient approach to accommodate more model
deployments by improving hardware utilization (Yu et al., 2022).

However, as the number of hosted models increases, collocation
inference encounters obstacles in further improving GPU resource us-
age. One critical reason is the constrained capacity of GPU memory,
which restricts the number of models that can reside in memory si-
multaneously. Unlike CPU memory, which is expandable, GPU memory
capacity is fixed and dependent on the specific GPU hardware type.
An inference server equipped with a fixed-size memory GPU can only
accommodate a limited number of models. Expanding GPU memory by
using GPUs with larger capacity or increasing the number of servers
may be challenging to sustain given the significant monetary cost asso-
ciated with these options. As such, efficiently managing GPU memory
to concurrently accommodate a diverse set of models is critical for DL
inference serving.

2.3. Memory management for deep learning inference

Deploying multiple models on a single GPU requires dynamically swap-
ping models in and out of GPU memory based on demand. When a
request arrives for a model that is not currently loaded, the system

H. Mo et al. Engineering Applications of Artiϧcial Intelligence 160 (2025) 111908
Table 1
A comparison of mCache and existing works on model caching.
 Solutions Caching policy GPU-enabled Cloud Locality-

aware
DL inference-
oriented

 Ogden et al. (2021) BeladyMIN
variant

× × × ×

 Anon (2025b) LFU ✓ ✓ ✓ ×
 Gujarati et al.
(2020)

LFU/LRU ✓ ✓ ✓ ×

 Cox et al. (2020) LRU ✓ ✓ ✓ ×
 Zhao et al. (2023) LRU ✓ ✓ ✓ ×
 Dakkak et al. (2019) LRU ✓ ✓ ✓ ×
 mCache IAM ✓ ✓ × ✓
must load the required model into memory, perform the inference,
and then potentially unload it afterward. The main challenge in this
process arises when a model that is not resident in GPU memory is
needed for an inference task. Given the large size of these models,
the time required to load them into the GPU introduces a significant
performance bottleneck.

A primary strategy for addressing this issue is to keep model param-
eters close to the GPU to reduce loading latency. An effective approach,
as proposed in Zou et al. (2023), is to cache model parameters in system
RAM. By storing model parameters in host memory, the data transfer
time to the GPU during inference is substantially reduced, thereby
enabling quicker loading and unloading of models from the GPU,
particularly when hosting multiple models on the same computing
instance.

Caching models in host memory can significantly reduce loading
times, often to just a few milliseconds. However, transferring data from
host memory to GPU memory remains more time-consuming than the
actual inference process, leading to GPU idle periods during data trans-
fer. To address this inefficiency, the approach presented in Gujarati
et al. (2020) conceptualizes GPU memory as a cache, enabling fre-
quently or recently accessed models to remain resident in GPU memory
and thereby avoid costly loading delays. The ModelMesh framework, as
detailed in Cox et al. (2020), preloads model parameters and leverages
GPU memory as a cache to prioritize frequently used models. It employs
an LRU caching strategy to facilitate efficient model serving. Similarly,
the approach in Zhao et al. (2023) implements a GPU memory caching
mechanism that leverages the GPU’s LRU list to determine which
models to evict. Trims (Dakkak et al., 2019) introduces GPU caching
via a daemon process that provisions GPU memory by intercepting
CUDA requests and applying basic caching strategies, such as LRU,
to reduce latency. Ogden et al. (2021) propose a lightweight cache
eviction policy based on a BeladyMIN variant, designed to optimize
model caching in system memory for edge-based inference scenarios.
In the commercial domain, AWS SageMaker (Anon, 2025b) adopts an
LFU-based algorithm to dynamically load and cache models based on
access frequency.

The aforementioned solutions treat GPU memory as a cache, which
aligns with the focus of our work. However, they typically rely on
traditional cache replacement policies (e.g., LRU), which are subopti-
mal for model caching. The effectiveness of such algorithms depends
heavily on factors like the inter-arrival time distribution of requests and
the relative popularity of cached objects, aiming primarily to improve
conventional metrics such as cache hit ratio. In contrast, mCache is
purpose-built for deep learning inference and prioritizes user-centric
metrics, particularly inference latency. It explicitly considers model-
specific characteristics, such as model size and the latency overhead
caused by cache misses. A comparison between mCache and related
work is presented in Table 1.
3
3. Motivation

Efficient management of GPU memory requires a comprehensive
understanding of the characteristics of the DL serving workload. We
begin this section by analyzing a representative serving workload, with
a particular focus on characteristics related to the invocation pattern
and memory usage. Additionally, we compare the model execution time
to the loading time.

3.1. Characterization of serving workload

For workload characterization, we use Microsoft’s publicly released
Azure Functions trace (Shahrad et al., 2020). We choose this trace
because it represents the real-world production FaaS workloads from
a major cloud provider, and recent studies (Lv et al., 2025; Strati et al.,
2024; Zhao et al., 2023; Li et al., 2023; Zhang et al., 2023) have
recognized its representativeness for DL serving workloads. Our use of
Azure traces as a surrogate for DL serving workloads is justified by two
key reasons: First, both FaaS and MaaS typically offer services for user-
oriented applications, which often leads to a comparable invocation
pattern. Furthermore, the Azure trace includes a significant number
of components involving requests for DL models (Fuerst and Sharma,
2021; Ishakian et al., 2018). This suggests that insights gained from
analyzing the FaaS workload’s traffic distribution are relevant to the
DL serving workload.

Invocation Patterns. We first parse the Azure trace to explore the
distribution of requests rate. Fig. 1 shows the distribution of request
rate by dividing the average requests per second into 100 buckets on a
logarithmic scale, where the 𝑋-axis represents the average request rate
of the functions within 24 h, and the 𝑌 -axis indicates the number of
functions corresponding to the average request rate. Note that an ap-
plication may have one or more functions, and only functions triggered
by HTTP requests are counted. As shown in Fig. 1, the average requests
per second range from a minimum of 1.15e−05 to a maximum of
9.67e+02. While some functions have a request rate close to 1000, only
1.17% of functions are invoked more than once per second, showing
a severe long-tailed distribution. The observation indicates that within
the serving workload, there is a significant variation in average request
rates among different applications. Only a subset of highly popular
applications experiences elevated average request rates, whereas others
exhibit markedly lower rates. Additionally, there exists a pronounced
disparity in the frequency of popular versus unpopular applications,
with the latter outnumbering the former by a considerable margin.
Such invocation patterns highlight the necessity for dynamic loading
and caching of models in accordance with the serving workload.

Memory Usage. To further investigate the impact of such workload
characteristics on resource usage, we show potential memory usage in
Fig. 2 based on some reasonable assumptions. We process the Azure
trace in three steps: (1) We categorize functions into buckets according
to the quantiles of their popularity, repeating this process multiple

H. Mo et al. Engineering Applications of Artiϧcial Intelligence 160 (2025) 111908
Fig. 1. Traffic distribution of Azure trace.
Fig. 2. Memory requirement. The amount of memory required increases faster than the number of requests per second.
times with the number of buckets varying from 1 to 200. For example,
when the number of buckets is set to 10, functions are divided into ten
groups based on their popularity distribution. (2) From each bucket,
we randomly select one function for each grouping and then sum
the number of requests per second. (3) We repeat this process 100
times and calculate the average requests per second to ensure data
consistency. For this analysis, we assume that each function requires
1 GB of memory. Subsequently, we plot the scatter plot in Fig. 2,
with the required memory (i.e., the number of functions) as the 𝑋-axis
data and the average requests per second of functions as the 𝑌 -axis
data. As illustrated in Fig. 2, even with memory usage increasing to
200 GB, the typical requests per second remain below 15. This indicates
that in order to align with the request volume targeted by the MLPerf
inference benchmark (Reddi et al., 2020), it would be necessary to host
and maintain 200 individual models concurrently in memory. Hosting
such a substantial number of models will hinder any single model from
achieving computational saturation.
4
3.2. Execution and loading time comparison

When a model cache miss occurs, the targeted model needs to be
completely loaded into memory before it can be executed, akin to a
cold start. We thus use the cold start latency to simulate inference
latency with a model cache miss. For latency measurement, we bench-
mark 9 Convolutional Neural Network (CNN) models available within
Keras (Anon, 2025g), with model sizes ranging from a few MBs to
hundreds of MBs. We directly count the time from load and execution
actions for each model. For hosting each model, we employ a con-
tainerized TensorFlow Serving (Olston et al., 2017) instance running
on an NVIDIA V100 GPU. To minimize execution time and highlight
the potential dominance of loading time in overall latency, we submit
inference requests with a batch size of 1 from simulated clients to
TensorFlow Serving. We execute 20 load-and-unload cycles for each
model, with 10 executions per cycle, and then calculate the average
loading time and execution time, respectively.

H. Mo et al. Engineering Applications of Artiϧcial Intelligence 160 (2025) 111908
Fig. 3. The overall inference latency component proportions.
Table 2
Inference latency statistics of representative CNN models. Inference latency breakdown comprises execution time and loading
time.
 Model Execution time (ms) Loading time (ms) Size (MB)
 MobileNetV1 0.25 16.0 131.8 1.9
 MobileNetV1 0.5 16.3 147.5 5.2
 MobileNetV1 0.75 17.4 172.7 10.5
 MobileNetV1 1.0 17.5 209.6 17.1
 DenseNet 30.8 586.3 43.9
 InceptionV3 34.7 1010.6 95.7
 InceptionResNetV2 47.4 1476.3 121.6
 InceptionV4 51.5 1642.3 171.2
 NASNetLarge 70.0 3702.3 356.6
We profile the overall model inference latency and present its
component proportions in Fig. 3. This figure demonstrates that the
loading time is significantly greater than the execution time, thereby
predominating the overall inference latency for all models. The loading
time can vary from hundreds of milliseconds to several seconds, as
detailed in Table 2. This observation is consistent with expectations, as
loading time is affected by the speed of transferring model parameters
from persistent storage, such as a disk, to RAM, and then to GPU
memory. The speed of this transfer primarily depends on the inherent
connection (e.g., PCIe) between the CPU and GPU, leaving limited room
for optimization. Therefore, it is advisable to minimize model reloading
and instead, retain frequently used models in GPU memory.

4. mCache: Model-level in-memory caching

Our study in the previous section highlights the potential for en-
abling fundamental model locality in DL inference serving. In this
section, we discuss the challenges and design of mCache, followed by
its caching algorithm.

4.1. Challenges

Our goal is to achieve a model-level in-memory caching system
that treats each DL model as a cacheable object. Similar to tradi-
tional caching systems such as Content Delivery Network (CDN), model
caching also employs a multi-level cache hierarchy. For instance, mod-
els can be stored in GPU memory or persistent storage such as local
5
disks or remote model repositories. However, model caching poses
several challenges to effectively cache model items compared to these
traditional caching systems.

First, cache miss penalty. DL model cache misses need to be handled
differently. In the case of model caching, when a cache miss occurs,
the requested model must be entirely loaded into the top-level cache
(i.e., GPU memory) before execution. This loading process can take
from hundreds of milliseconds to several seconds. If the top-level cache
is already full, a model eviction decision needs to be made based on
relevant factors. This differs from other caching systems like CDNs,
where the requested object can be read from any cache level and does
not necessitate being fully loaded into the higher-level cache before
serving the request (Berger et al., 2017).

Second, variable model size. Caching fixed-size objects in traditional
caching systems simplifies resource management since they are aware
of memory space requirements in advance and can allocate equivalent
memory sizes for objects in all cache levels. However, the memory
space requirements of DL models typically vary widely based on their
sizes.

Third, dynamic access patterns. The serving workload is not static
but dynamic. In the cloud environment, for example, due to the un-
predictable nature of inference request arrivals (Zhang et al., 2019),
perfectly preloading the targeted model is often not feasible. This poses
significant challenges in maintaining a high model cache hit ratio and
achieving the desired serving throughput.

H. Mo et al. Engineering Applications of Artiϧcial Intelligence 160 (2025) 111908
Fig. 4. The logical architecture overview of mCache.
In summary, these challenges can be summarized as the high cache
miss penalty and variable memory space requirements during DL infer-
ence serving, particularly in the presence of dynamic access patterns.
These challenges guide the design of our importance-aware model
caching algorithm.

4.2. System overview

mCache is a novel caching system built upon DL serving framework
to enable model cacheability for inference service. Within mCache, the
models are cached in GPU memory and executed with given inputs
to provide consistent response times for invocation requests from end-
users. For the initial inference, the cache manager fetches the models
from persistent storage and populates the cache with the models to
be accessed first. Upon receiving the required model list, the cache
manager checks whether each model resides in the cache. Assuming
the cache is full and the requested model is not found in the cache
(cache miss), our importance-aware model caching algorithm will evict
the least important model previously cached to make space for the
newly requested model. Specifically, the algorithm uses a min heap-
based importance queue and shadow cache to track the models along
with their associated importance score. The heap objects are key–value
pairs, where the key represents the importance score, and the value is a
reference to the model item in the cache. These objects in the heap are
sorted based on their importance score, with the topmost object being
referred to as the top-node. When the cache is full, the least important
model at the top of the heap is evicted to make room for the incoming
model. By keeping the most important models in the GPU memory
cache, mCache ensures a good cache hit ratio. Fig. 4 illustrates the
single-node logical architecture of mCache along with its components.
6
4.3. Caching algorithm

4.3.1. Problem definition
We next describe the definition of model caching problem, with

an emphasis on determining which in-memory model(s) to evict to
serve incoming inference requests. Our objective is to minimize cache
miss penalty — the performance overhead incurred when processing
an inference request that requires loading a non-resident model into
memory.

At a given time, assume there is a need for a set of models 𝐼 to be
hosted in a serving system. Let 𝐶 and 𝐸 denote the set of cached models
in GPU memory and the set of models awaiting eviction, respectively.
Let 𝑆 denotes the model size in memory. For example, 𝑆𝑖 represents
the memory usage of model 𝑖 ∈ 𝐼 , 𝑆𝑐 represents the memory usage of
model set 𝐶. Let 𝑇 be the total capacity size of the cache (i.e., GPU
memory). Only a proper subset 𝐶 ⊂ 𝐼 of models can be stored in
the cache simultaneously. For each incoming invocation request, the
objective is to form an eviction set 𝐸 such that 𝑇 − (𝑆𝐶 − 𝑆𝐸) ⩾ 𝑆𝑖,
i.e., to evict enough models to accommodate a new incoming model
𝑖. Note that the eviction set 𝐸 is a subset of 𝐶, and 𝐸 may consist of
either no models or multiple models.

To identify candidates for eviction set 𝐸, a specialized metric is
needed to characterize in-memory model items. Unlike traditional
caching algorithms (e.g., LRU and LFU), where eviction candidates
are selected based on recency or frequency pattern, in model caching,
additional factors such as model size must be considered. We therefore
propose model utility, a novel evaluation metric designed to assess and
prioritize models for optimal cache allocation.

H. Mo et al. Engineering Applications of Artiϧcial Intelligence 160 (2025) 111908
4.3.2. Model utility
Model caching requires targeted objects to be preloaded in the

memory before execution, which means that the impact of cache misses
on inference performance cannot be ignored. To this end, model utility
is designed to take into account both cache access patterns and cache
miss penalty. Its definition can be described as follows:

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑖) =
𝑃𝑖
𝑆𝑖

⋅
1
𝑇𝑖

(1)

where 𝑃𝑖 denotes the cache miss penalty of model 𝑖, which is equivalent
to the cold start-related latency overhead. 𝑆𝑖 denotes the memory usage
of model 𝑖, and 𝑇𝑖 denotes the time to the next incoming invocation
request for model 𝑖. Here, 𝑃𝑖 and 𝑆𝑖 could be obtained using offline
performance testing and profiling. For each model 𝑖, we predict its
next request arrival time 𝑇𝑖 using its invocation history. Specifically,
we estimate the request rate 𝛥𝑖 via a sliding-window or exponentially
weighted moving average, ensuring the calculation reflects recent traf-
fic trends. Similar modeling approaches have been adopted in prior
works (Sriraman and Wenisch, 2018; Zhang et al., 2020). The serving
interval is then approximated as 𝑇𝑖 ≈ 𝑇 ′ = 1

𝛥𝑖 . This approximation
is reasonable, as user requests typically occur independently and un-
predictably, particularly when initiated by a large number of users
operating asynchronously. Such behavior results in random request
arrivals over time, with inter-arrival times that inherently follow an
exponential distribution. These are defining characteristics of a Poisson
process, which is commonly adopted as a workload model in related
studies (Strati et al., 2024; Zhong et al., 2024; Chen et al., 2025).

The design of model utility is based on a key insight: when a model
is evicted from the cache, it will be reloaded in the future. Essentially,
the utility of a model is conceptualized as the opportunity cost occurred
as if it were not evicted by choosing to remove another in-memory
models with a lower utility. By accounting for both the amortized cache
miss penalty and the potential cache residency duration, we develop a
standardized metric for cross-model comparison. As the composition
of the utility definition shows, it balances the need to keep a high-
penalty but small models in the cache through 𝑃 𝑖∕𝑆𝑖, and reduces the
number of reloading models simultaneously through 𝑇𝑖. The longer it
takes for a model to be re-requested, the more time we can spread
out the penalty of a cache miss, resulting in a lower utility. This
intuitive relationship arises from the constant penalty and size, which
are inherent to hardware configuration and model parameters. As a
result, the 𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑖) decreases monotonically with the increasing time
until the next request for model 𝑖.

4.3.3. Rank-based importance score
While per-model utility provides a straightforward metric for quan-

tifying individual model importance, it fails to capture each model’s
contribution to overall system throughput. The relative rankings enable
mCache to prioritize the highest-importance models currently in mem-
ory. To quantify each model’s contribution more precisely, we develop
a log-based ranking method, as formalized in Eq. (2):

𝑟𝑎𝑛𝑘𝑖 = 𝑙𝑜𝑔(
𝐶
∑

𝑗=1,𝑗≠𝑖
𝐹 (𝑢𝑖 > 𝑢𝑗) + 𝑏0) (2)

The rank-based importance score for the 𝑖th model in the GPU
memory cache containing 𝐶 models is denoted by 𝑟𝑎𝑛𝑘𝑖. 𝑢𝑖 and 𝑢𝑗
denote the utility for the 𝑖th and 𝑗th model, respectively. The term 𝑏0
serves as a bias to adjust the range of ranks on a logarithmic scale. 𝐹
is an indicator function that returns a value of 1 when the condition 𝑢𝑖
> 𝑢𝑗 is true, and 0 otherwise. For each 𝑗 item in cache, this condition
assists in placing each model in the proper rank. Models with a smaller
utility are assigned a lower rank and are considered more suitable
candidates for eviction.

A challenge in applying importance scores lies in their dynamic
nature — these scores continuously evolve with the inference work-
load, resulting in fluctuating cache hit ratios. To tackle this challenge,
7
mCache implements periodic updates of the importance scores. To
avoid the overhead of constructing a heap-based queue, we opt not to
update the importance queue (IQ) in place. Instead, a shadow cache
with the same structure as the IQ is maintained. After importance
updates, the IQ becomes read-only and is utilized only for eviction,
while changes are recorded in the shadow cache. Once the shadow
cache is fully rebuilt, it becomes a new IQ and the original one is
released. This approach allows for asynchronous update of importance
scores in the heap-based queue and does not affect the model swapping
process.

4.3.4. Importance-aware model caching
When the requested model items are not present in cache, the cache

manager needs to fetch them from persistent storage. Furthermore,
it must decide whether to evict the model item when the memory
cache reaches its capacity. One challenge is that commonly used LRU-
like cache replacement algorithms do not work effectively in model
management for DL inference serving, as they fail to consider model
priority. Hence, there is a need for a cache replacement algorithm
that takes model importance into consideration, thereby improving the
cache hit ratio during model serving.

The high-level algorithm for the Importance-Aware Model (IAM)
cache management is outlined in Algorithm 1. Specifically, in case
of a cache miss and the cache is not full, the model item read from
persistent storage is directly inserted into cache. IAM then creates a
corresponding heap object for the model item and adds it to the heap.
When insufficient cache space is available for an incoming model,
IAM iteratively evicts the model item at the top of the heap-based
importance queue (IQ) that possesses the smallest importance score.
This eviction process continues until enough space is freed up within
the cache. Following this, IAM then generates a new heap object
corresponding to the incoming model and inserts it into the heap.
Algorithm 1 Importance-Aware Model (IAM) Caching Algorithm
Require: 𝐼𝑄: Importance queue for currently-cached models.
1: while request model 𝑖 for serving do
2: // Calculate rank-based importance score based on Equation (1)
and Equation (2)

3: 𝑟 = 𝑟𝑎𝑛𝑘(𝑖)
4: if 𝑐𝑎𝑐ℎ𝑒_ℎ𝑖𝑡 then
5: 𝑐𝑎𝑐ℎ𝑒.𝑔𝑒𝑡(𝑖)
6: else if 𝑐𝑎𝑐ℎ𝑒_𝑚𝑖𝑠𝑠 and 𝑐𝑎𝑐ℎ𝑒_𝑛𝑜𝑡_𝑓𝑢𝑙𝑙 then
7: // Insert this model item into the cache and IQ
8: 𝑐𝑎𝑐ℎ𝑒.𝑖𝑛𝑠𝑒𝑟𝑡(𝑖)
9: 𝐼𝑄.𝑠𝑒𝑡(𝑟, 𝑖)
10: else
11: while cache_free_size < size(i) do
12: // Find the model item with the minimal score in the

cache
13: 𝑚𝑖𝑛_𝑟𝑎𝑛𝑘, 𝑚𝑖𝑛_𝑖𝑡𝑒𝑚 = 𝐼𝑄.𝑚𝑖𝑛()
14: // Evict the least important model item from cache
15: 𝑐𝑎𝑐ℎ𝑒.𝑒𝑣𝑖𝑐𝑡(𝐼𝑄.𝑝𝑜𝑝(𝑚𝑖𝑛_𝑖𝑡𝑒𝑚))
16: end while
17: 𝑐𝑎𝑐ℎ𝑒.𝑖𝑛𝑠𝑒𝑟𝑡(𝑖)
18: 𝐼𝑄.𝑠𝑒𝑡(𝑟, 𝑖)
19: end if
20: end while

Theoretically, the importance-aware model caching algorithm is
expected to demonstrate superior performance in comparison to tradi-
tional LRU-like algorithms exploiting temporal locality. Let us take Fig.
5 as an example, with a cache capacity of three and three consecutively
cached model items (#1, #2, #3), when item #4 is accessed, the
LRU-like replacement algorithm will evict item #1 since it is the least
recently used, as shown in Fig. 5(a). However, assuming item #2 has
the lowest importance score and is the top-node in the heap, there
is a higher likelihood of accessing #1 than #2 in future references.

H. Mo et al. Engineering Applications of Artiϧcial Intelligence 160 (2025) 111908
Fig. 5. The comparison of LRU and mCache. The squares in darker color represent models with higher importance score.
Therefore, evicting model #2 would lead to a higher cache hit ratio,
as shown in Fig. 5(b).

5. Implementation

mCache is developed upon TensorFlow Serving and comprises
around 2500 lines of Go code. It intercepts both HTTP as well as gRPC
inference calls from client applications, requiring no modifications to
the underlying TensorFlow Serving framework (Olston et al., 2017).
When a model is requested, mCache proceeds to identify a TensorFlow
Serving service that will serve the model. If the model is loaded and
ready, the request will be forwarded directly to the TensorFlow Serving
for execution. Otherwise, mCache will fetch it from the persistent
storage and load it into TensorFlow Serving while unloading models
based on the proposed IAM caching algorithm, before it forwards the
request to TensorFlow Serving.

mCache implements the cache manager as a wrapper that encapsu-
lates the IAM caching algorithm. Cache manager uses a key–value store
to manage models in cache. The key denotes model ID and the value
stores the data item of a model. In addition to supporting standard one-
sided operations such as lookup, get, and put, the cache manager also
provides an interface for periodically updating the model’s importance.
mCache is designed for easy deployment—it runs as a Docker container
and can be managed efficiently using container orchestration systems
like Kubernetes (Luksa, 2017).

6. Evaluation

This section evaluates our mCache system. We first describe our ex-
periment setup, then analyze the performance of mCache and compare
its IAM caching algorithm with other caching algorithms.

6.1. Experiment setup

Testbed. Our testbed is deployed on an inference server with two
Intel Xeon Silver 4210R × 10 Core Processors, 64 GB DRAM, one
NVIDIA V100 GPU (16 GB memory). The GPU is powered by Nvidia
driver 470.103, CUDA 11.4, and cuDNN 8. NVIDIA Docker is leveraged
to provide containers. We serve the DL models using containerized
Tensorflow Serving (Olston et al., 2017) on the server and place the
model files in the remote storage provided by an HDD-based NFS
server.

Inference models. We conduct our experiments on several represen-
tative computer vision (CV) and natural language processing (NLP) DL
models, namely, ResNet50 (He et al., 2016), SSD (Liu et al., 2016),
BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2021), XLNet (Yang
et al., 2019), GPT-2 (Radford et al., 2019), T5 (Raffel et al., 2020).
Requests for CV model services use a picture that is 600 × 600 pixels
in size, and NLP model services use a short query of 20 words. These
models, which vary in size from hundreds of MB to several GB, are
wildly utilized across multiple tasks, including image classification,
object detection, translation, text generation and question answering.
8
All these models are obtained from Hugging Face Model Hub (Anon,
2025f).

Inference workload. There does not exist an open-source production
DL inference trace to the best of our knowledge. Therefore, following
the practice of prior studies (Lv et al., 2025; Strati et al., 2024; Zhao
et al., 2023; Li et al., 2023; Zhang et al., 2023), we derive the inference
workload from the Azure function trace (Shahrad et al., 2020). The
trace consists of service statistics and invocation counts for each minute
of the 24 h period. We present a three-step methodology for generating
a request-level workload from the trace as follows: (1) Generate a list
of service invocation events to indicate when the service is invoked. We
count the number of invocations to each service in the trace and dis-
tribute them in a random order across the specified time (e.g., 10 min)
based on their invocation frequency. In order to match the characteris-
tics of Azure traces with DL workloads, we only count services triggered
by HTTP requests since they are likely to be invoked by end-users.
In addition, we remove services whose popularity quantile is higher
than the 90th. We do this because trendy models typically remain in
GPU memory and benefit less from model caching optimization. (2)
Associate inference models with service invocation events. We pair
models with service invocations to introduce the correlation between
the two. The existing characteristics of the service invocations in the
trace, such as allocated memory and execution duration, are inaccurate
to match DL models. Thus, we choose one of the 7 DL models for each
service in four ways: First, Random. This approach randomly selects
one of the available models as the inference model for the service.
Second, Round-robin. This approach first sorts the models in order of
decreasing loading time and then selects the model in a round-robin
manner. Third, Quantile. This approach selects the model based on
the popularity quantile of the service and hence introduces a positive
correlation between the popularity of a service and the loading time
penalty; that is, models with high loading time are selected for services
with high popularity. Fourth, Quantile-r. Contrary to the quantile ap-
proach, this approach reverses the correlation; that is, models with low
loading time are selected for services with high popularity. (3) Down
sample the service invocation events to an appropriate level. One hour
of requests is extracted from the Azure trace, which is down sampled
by 15%, including around 2389 requests. These requests are distributed
across 7 models with 4 different correlations, allowing us to test a wide
range of workload variations.

6.2. Analysis of mCache’s performance

6.2.1. Average inference latency
We first present the average inference latency for the seven models

serving with different workload characteristics. In this context, the
inference latency is measured from the moment a request is sent to
the server until the corresponding response is received. We have two
observations from Fig. 6.

First, different workloads have significantly different results in aver-
age inference latency. As shown in the figure, the random and quantiles
workloads consistently represent the uppermost and lowermost points

H. Mo et al. Engineering Applications of Artiϧcial Intelligence 160 (2025) 111908
Fig. 6. Comparison of average inference latency under different workload characteristics. Percentages denote the proportion of GPU memory used as cache.
in most cases, respectively. Their difference comes from the correlation
between model load penalty and popularity. For random workload, it
is relatively more difficult to determine the best candidate for model
eviction due to its inherent unpredictability, leading to a larger in-
crease in inference latency as cache size decrease. Meanwhile, the
quantiles workload consists of high-penalty and high-popularity models
and hence contributes to reducing the cache miss ratio for frequently
used high-penalty models. Note that the quantiles workload encounters
exceptionally high latency at 20% of cache size. This is because the
cache space is too small to accommodate multiple large-sized models.
As a result, frequent model swapping occurs, leading to huge model
load delays and prolonging average inference latency.

Second, different workloads exhibit distinct sensitivities to changes
in the budgeted cache space. An encouraging finding is that our mCache
reacts smoothly to the reduction in cache space, particularly for quan-
tiles and quantiles-r workloads exhibiting correlation between model
load penalties and access popularity. Specifically, nearly half memory
savings are attained in these workloads with only modest average infer-
ence latency increase. However, for other workloads, mCache responds
gracefully only to the initial reduction of cache space. For cache sizes
lower than 60%, the workloads have a stronger influence on latency
performance, leading to significant performance degradation.

6.2.2. Inference latency breakdown
In our next experiment, we break down overall inference latency

into two components: model loading time and the other (model execu-
tion time and client–server communication latency). We then present
the proportion of the dominating component — model loading time.

Fig. 7 shows how the percentages of the loading time changes
over cache size for four different workloads. Similar to the finding
in previous experimental study, we observe that the loading delay of
models dominates overall inference latency in most cache sizes for
each workload. As the cache sizes decrease, the proportion of loading
time to the overall latency increases across all workloads. Specially,
in the quantiles workload, the loading time percentage experiences
a significant surge, increasing from 8% to 98%, as the cache size
decreases from 80% to 20%. This phenomenon corresponds to the sharp
incline observed in the quantiles workload’s curve in Fig. 6. The rise
in loading time in percentage indicates the considerable challenge of
accurately caching high-penalty targeted models within a smaller cache
space. For a cache size of 100%, note that we do not report model
loading time, since all models can be simultaneously loaded into the
GPU memory.
9
6.2.3. Loading time CDF
When a cache miss occurs, the model load delay is introduced,

prolonging the inference latency. Thus, we further evaluate the cumu-
lative distribution function (CDF) of model loading time, which helps
demonstrate the extent of inference latency degradation due to model
caching. Fig. 8 illustrates the model loading time CDF for four different
workloads. As shown in figure, for up to 90% of inference requests,
the model loading time remains below 10 s and 3 s for both 40% and
80% cache sizes across all workloads, respectively. This result implies
that adopting model caching techniques can be beneficial in reducing
memory footprint when users are willing to trade off some inference
latency performance to cut costs. Additionally, we notice that the CDF
displays a long tail in both Fig. 8(a) and Fig. 8(b), indicating that
certain inference requests encounter prolonged response times. The
reason for the long tail in the CDF is attributed to newly targeted
models with high penalties experiencing cache misses, resulting in
significant model load delays. Thus, improving the cache hit ratio for
these models presents a promising direction for future research. Based
on the results above, we argue that model caching is indeed feasible in
practical DL inference serving, especially when their cache miss penalty
is moderate.

6.3. Comparison with other algorithms

Previously we demonstrated how well mCache can perform under
four difference workload characteristics. We next compare the ability
of mCache’s IAM to manage cached model replacement in GPU memory
against several generic cache replacement algorithms used as baselines.
These include LRU, a temporal locality-aware algorithm employed in
prior studies (Gujarati et al., 2020; Cox et al., 2020; Zhao et al., 2023;
Dakkak et al., 2019), and LFU, a frequency locality-aware algorithm
used in other works (Anon, 2025b). Additionally, we also implement
two advanced hybrid locality-aware algorithms for further comparison,
namely ARC (Megiddo and Modha, 2003) and SRRIP (Jaleel et al.,
2010). For fair comparison, we evaluate the model cache hit ratio with
random workload characteristic, since this workload does not favor any
specific caching algorithm and is common in a real-world production
environment. In summary, the compared baselines are as follows:

• Least Recently Used (LRU), which removes the least recently used
item when the cache is full, assumes that items accessed recently
are more likely to be used again in the near future.

• Least Frequently Used (LFU), which removes the least frequently
used item when the cache is full, assumes that items with lower
access frequencies are less likely to be accessed again.

H. Mo et al. Engineering Applications of Artiϧcial Intelligence 160 (2025) 111908
Fig. 7. The proportion of average loading time to the overall latency under different workload characteristics. Percentages denote the proportion of GPU memory used as cache.
Fig. 8. Model loading time CDF at 40% and 80% of cache sizes under different workload characteristics.
• Adaptive Replacement Cache (ARC), which keeps track of both
frequently used and recently used items plus a recent eviction
history for both, aims to strike a balance between LRU and
LFU algorithms and efficiently adapt to changing access pat-
terns, resulting in improved cache hit rates and overall system
performance.

• Static Re-Reference Interval Prediction (SRRIP), which provides
good scan resistance while also allowing older cache items that
have not been reused to be evicted. By assigning a Re-Reference
Prediction Value (RRPV) to each cache item, SRRIP tracks the
likelihood of reuse, incrementing RRPVs for cache misses and
evicting the item with the highest RRPV value, ensuring efficient
cache utilization and eviction of less-referenced item.

6.3.1. Cache hit ratio
Fig. 9 presents the average hit ratios while serving seven DL mod-

els at different cache sizes under a random workload characteristic.
Notably, all caching algorithms exhibit a considerably low hit ratio
at a cache size of 20%. This low hit ratio serves as an indicator of
thrashing, wherein models are frequently being unloaded and loaded
due to insufficient cache space to effectively accommodate the working
set of models. However, as the capacity size of the cache increases,
10
the hit ratio shows a gradual improvement. We further compare IAM
with other caching algorithms at each cache size. We find that IAM
indeed improves the cache hit ratio, e.g., by about a half compared
to other caching algorithm at the cache size of 40%. The reason for
the improved hit rate is that IAM has foreknowledge of the upcoming
requests, and hence it can more accurately select which models to evict.
However, as the cache size increases, the outperformance of IAM over
the other caching algorithms shrinks because there is more cache space
to accommodate newly targeted models. In conclusion, by ensuring
a higher hit ratio with limited available cache space, mCache holds
effectively more model in the limited cache space, therefore achieving
higher GPU resource efficiency for DL inference serving.

6.3.2. Throughput
In our next experiment, we access the throughput of mCache un-

der random workload, which serves to demonstrate the superiority
of mCache in efficiently processing inference requests with a limited
cache space. Fig. 10(a) shows that IAM has around 1.5 times better
throughput compared to baseline LFU algorithm at 40% of cache size.
In the experiment with 80% cache size, as shown in Fig. 10(b), IAM
demonstrates a significantly higher throughput, approximately 2.39
times better than the baseline LFU algorithm. Similar observations

H. Mo et al. Engineering Applications of Artiϧcial Intelligence 160 (2025) 111908
Fig. 9. Comparison of model cache hit ratio of various caching algorithms and cache sizes under random workload. IAM denotes the caching algorithm used in our proposed
mCache system. Percentages denote the proportion of GPU memory used as cache.
Fig. 10. Comparison of throughput of different caching algorithms at 40% and 80% of cache sizes using a random workload.
are made for other cache sizes, showcasing the consistent throughput
improvement of IAM. Remarkably, IAM maintains its superior perfor-
mance even when compared to the superior SRRIP algorithm. The
improvement in the ability to process more requests is because the
IAM algorithm is optimized for throughput by targeting the hosting
of high-importance models. Consequently, IAM experiences reduced
model swapping, especially for high-penalty models, which in turn
frees up more time for model execution, enabling faster processing of
requests compared to other algorithms.

6.3.3. Model loading time
A core goal of the caching algorithm is to minimize the delay of

memory access, which is referred to as model loading time in this
context. In this set of experiments, we evaluate the performance gain
achieved in model loading time.

Table 3 presents the comparison of different caching algorithms
in terms of their ability to reduce the average model loading time
under random workload characteristic. As we can see in the table,
IAM achieves the lowest mean model loading time, demonstrating
5.96, 4.21, and 1.68 s across cache space of 40%, 60%, and 80%,
respectively, and is equivalent to 27%, 43% and 62% improvements
against LFU baseline, respectively. This indicates that the larger the
cache size, the greater the advantage of IAM over LFU in optimizing
model caching and achieving faster loading time. We also note a big gap
between LFU and other algorithms in terms of model caching gains in
11
reducing loading time, while their cache hit ratio exhibits relatively mi-
nor difference, as shown in Fig. 8. This phenomenon is attributed to the
LFU algorithm’s tendency to evict model items with the lowest access
frequency. Moreover, in scenarios characterized by random workload,
there is typically a lower rate of access to high-penalty and large-sized
models, rendering them less frequently used and thus more susceptible
to eviction by the LFU algorithm. Consequently, when less frequently
accessed high-penalty models are evicted, the process of reloading them
incurs a non-negligible time delay, often ranging from several times to
ten times longer than that of other models. In contrast, IAM is aware
of the penalty of reloading models, prioritizing the retention of high-
penalty models in memory. As a result, IAM outperforms LFU and other
caching algorithms primarily due to its awareness of model penalty and
size, leading to more effective caching decisions.

7. Discussion

Heterogeneity of GPUs. Our solution inherently supports the use of
heterogeneous GPUs for model caching. It only requires running the
same profiling procedure for each unique GPU type, and applying the
profiled parameters 𝑃𝑖 and 𝑆𝑖 in the proposed caching algorithm.

Usability. Our solution is built upon the commonly used deep learn-
ing serving frameworks, and users do not need to make any changes
to their code. To enable automatic model loading and unloading, our
solution introduces only minor, user-transparent modifications to Ten-
sorFlow Serving’s model configuration file. Additionally, our proposed

H. Mo et al. Engineering Applications of Artiϧcial Intelligence 160 (2025) 111908
Table 3
Model loading time statistics with random workload.
 Cache Algorithm Avg. (s) Gain

40%

LFU 8.20 –
 LRU 6.93 15%
 ARC 6.36 22%
 SRRIP 6.32 23%
 IAM 5.96 27%

60%

LFU 7.35 –
 LRU 5.48 25%
 ARC 4.89 33%
 SRRIP 4.74 36%
 IAM 4.21 43%

80%

LFU 4.38 –
 LRU 2.57 41%
 ARC 2.23 49%
 SRRIP 2.01 54%
 IAM 1.68 62%

importance-aware caching technique for multi-model collocation infer-
ence and the Cache Manager implementation can be adopted by other
serving frameworks (e.g., TorchServe (Anon, 2025k), Bentoml (Anon,
2025c)) to enhance their GPU-based inference performance.

Deployment Scenario Limitations. Multi-model collocation infer-
ence is ideal for hosting a large number of models that use the same
ML framework on a shared serving container. When workloads involve
mixed access patterns (i.e., frequent requests to popular models and
sporadic requests to less popular ones), our model-cacheable inference
solution can efficiently serve this traffic with fewer resources and
higher cost savings, particularly when the models are fairly similar
in size and invocation latency. However, DL applications should be
tolerant of cold-start latency penalties when invoking infrequently used
models. For applications with substantially higher transactions per
second or latency requirements, dedicated serving containers remain
the preferable option.

8. Conclusion

The GPU memory capacity is a major bottleneck in DL inference
serving when multiple models collocate in a single GPU. To address
this bottleneck, we present mCache, a novel caching system specifi-
cally designed for DL inference serving that aims to reduce memory
footprint for collocation inference. mCache realizes an importance-
aware caching algorithm that leverages importance scores to dynam-
ically manage models in GPU memory, thereby enabling fundamen-
tal cacheability for inference serving systems. Experiments show that
mCache reduces memory footprint with a modest increase in inference
latency, and improves throughput by up to 1.5× and 2.39× given
the 40% and 80% GPU memory capacity compared to similar serving
system using LFU caching algorithm. As MaaS become more and more
popular, we hope mCache will inspire the next generation of memory
cache system designed for DL inference serving.

CRediT authorship contribution statement

Hao Mo: Writing – review & editing, Writing – original draft, Soft-
ware, Data curation, Conceptualization. Didier El Baz: Writing – re-
view & editing, Supervision. Ligu Zhu: Writing – review & editing, Su-
pervision, Conceptualization. Suping Wang: Software, Data curation.
Songfu Tan: Visualization, Software. Hongning Zhao: Visualization,
Data curation. Lei Shi: Validation, Supervision, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
12
Acknowledgment

This work is supported by the Fundamental Research Funds for
the Central Universities (No. CUC25SG013) and the Foundation of
Key Laboratory of Education Informatization for Nationalities (Yunnan
Normal University), Ministry of Education (No. EIN2024C006).

Data availability

The authors do not have permission to share data.

References

Anon, 2025a. Amazon machine learning. https://aws.amazon.com/machine-learning.
Anon, 2025b. AWS SageMaker multi-model-endpoints. https://docs.aws.amazon.com/

sagemaker/latest/dg/multi-model-endpoints.html.
Anon, 2025c. Bentoml documentation. https://docs.bentoml.com.
Anon, 2025d. Docker. https://www.docker.com.
Anon, 2025e. Google cloud prediction API documentation. https://cloud.google.com/ai-

platform/prediction/docs.
Anon, 2025f. Huggingface model hub. https://huggingface.co/models.
Anon, 2025g. Keras, . https://keras.io/api/applications.
Anon, 2025h. NVIDIA multi process service (MPS). https://docs.nvidia.com/deploy/

pdf/CUDA-Multi-Process-Service-Overview.pdf.
Anon, 2025i. Nvidia triton inference server. https://developer.nvidia.com/nvidia-triton-

inference-server.
Anon, 2025j. Tensorflow serving documentation. https://www.tensorflow.org/tfx/

guide/serving.
Anon, 2025k. Torchserve documentation. https://docs.pytorch.org/serve.
Berger, D.S., Sitaraman, R.K., Harchol-Balter, M., 2017. Adaptsize: Orchestrating the

hot object memory cache in a content delivery network.. In: NSDI, vol. 17, pp.
483–498.

Chen, W., Lu, C., Xu, H., Ye, K., Xu, C., 2025. Multiplexing dynamic deep learning
workloads with SLO-awareness in GPU clusters. In: Proceedings of the Twentieth
European Conference on Computer Systems. pp. 589–604.

Choi, Y., Rhu, M., 2020. Prema: A predictive multi-task scheduling algorithm for
preemptible neural processing units. In: 2020 IEEE International Symposium on
High Performance Computer Architecture. HPCA, IEEE, pp. 220–233.

Cox, C., Sun, D., Tarn, E., Singh, A., Kelkar, R., Goodwin, D., 2020. Serverless
inferencing on kubernetes. arXiv preprint arXiv:2007.07366.

Dakkak, A., Li, C., De Gonzalo, S.G., Xiong, J., Hwu, W.-m., 2019. Trims: Transparent
and isolated model sharing for low latency deep learning inference in function-as-a-
service. In: 2019 IEEE 12th International Conference on Cloud Computing. CLOUD,
IEEE, pp. 372–382.

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.
04805.

Dhakal, A., Kulkarni, S.G., Ramakrishnan, K., 2020. Gslice: controlled spatial sharing of
GPUs for a scalable inference platform. In: Proceedings of the 11th ACM Symposium
on Cloud Computing. pp. 492–506.

Ding, Y., Zhu, L., Jia, Z., Pekhimenko, G., Han, S., 2021. Ios: Inter-operator scheduler
for CNN acceleration. Proc. Mach. Learn. Syst. 3, 167–180.

Fuerst, A., Sharma, P., 2021. FaasCache: keeping serverless computing alive with
greedy-dual caching. In: Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems. pp.
386–400.

Ghodrati, S., Ahn, B.H., Kim, J.K., Kinzer, S., Yatham, B.R., Alla, N., Sharma, H.,
Alian, M., Ebrahimi, E., Kim, N.S., et al., 2020. Planaria: Dynamic architecture
fission for spatial multi-tenant acceleration of deep neural networks. In: 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture. MICRO, IEEE,
pp. 681–697.

Gujarati, A., Karimi, R., Alzayat, S., Hao, W., Kaufmann, A., Vigfusson, Y., Mace, J.,
2020. Serving DNNs like clockwork: Performance predictability from the bottom
up. In: 14th USENIX Symposium on Operating Systems Design and Implementation.
OSDI 20, pp. 443–462.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 770–778.

Ishakian, V., Muthusamy, V., Slominski, A., 2018. Serving deep learning models in a
serverless platform. In: 2018 IEEE International Conference on Cloud Engineering.
IC2E, IEEE, pp. 257–262.

Jaleel, A., Theobald, K.B., Steely Jr., S.C., Emer, J., 2010. High performance cache
replacement using re-reference interval prediction (RRIP). ACM Sigarch Comput.
Archit. News 38 (3), 60–71.

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S.,
Bhatia, S., Boden, N., Borchers, A., et al., 2017. In-datacenter performance analysis
of a tensor processing unit. In: Proceedings of the 44th Annual International
Symposium on Computer Architecture. pp. 1–12.

https://aws.amazon.com/machine-learning
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://docs.bentoml.com
https://www.docker.com
https://cloud.google.com/ai-platform/prediction/docs
https://cloud.google.com/ai-platform/prediction/docs
https://cloud.google.com/ai-platform/prediction/docs
https://huggingface.co/models
https://keras.io/api/applications
https://docs.nvidia.com/deploy/pdf/CUDA-Multi-Process-Service-Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA-Multi-Process-Service-Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA-Multi-Process-Service-Overview.pdf
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://docs.pytorch.org/serve
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb12
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb12
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb12
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb12
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb12
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb13
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb13
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb13
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb13
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb13
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb14
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb14
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb14
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb14
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb14
http://arxiv.org/abs/2007.07366
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb16
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb16
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb16
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb16
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb16
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb16
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb16
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb18
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb18
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb18
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb18
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb18
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb19
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb19
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb19
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb20
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb20
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb20
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb20
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb20
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb20
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb20
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb21
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb21
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb21
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb21
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb21
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb21
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb21
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb21
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb21
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb22
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb22
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb22
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb22
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb22
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb22
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb22
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb23
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb23
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb23
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb23
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb23
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb24
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb24
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb24
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb24
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb24
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb25
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb25
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb25
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb25
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb25
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb26
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb26
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb26
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb26
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb26
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb26
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb26

H. Mo et al. Engineering Applications of Artiϧcial Intelligence 160 (2025) 111908
Li, Z., Zheng, L., Zhong, Y., Liu, V., Sheng, Y., Jin, X., Huang, Y., Chen, Z.,
Zhang, H., Gonzalez, J.E., et al., 2023. AlpaServe: Statistical multiplexing with
model parallelism for deep learning serving. In: 17th USENIX Symposium on
Operating Systems Design and Implementation. OSDI 23, pp. 663–679.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C., 2016.
Ssd: Single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, the Netherlands, October 11–14, 2016, Proceedings, Part
I 14. Springer, pp. 21–37.

Liu, Z., Lin, W., Shi, Y., Zhao, J., 2021. A robustly optimized BERT pre-training ap-
proach with post-training. In: China National Conference on Chinese Computational
Linguistics. Springer, pp. 471–484.

Luksa, M., 2017. Kubernetes in Action. Manning Publications.
Lv, C., Shi, X., Lei, Z., Huang, J., Tan, W., Zheng, X., Zhao, X., 2025. Dilu: Enabling

GPU resourcing-on-demand for serverless DL serving via introspective elasticity. In:
Proceedings of the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1. pp. 311–325.

Megiddo, N., Modha, D.S., 2003. ARC: A Self-Tuning, low overhead replacement cache.
In: 2nd USENIX Conference on File and Storage Technologies. FAST 03.

Mendoza, D., Romero, F., Li, Q., Yadwadkar, N.J., Kozyrakis, C., 2021. Interference-
aware scheduling for inference serving. In: Proceedings of the 1st Workshop on
Machine Learning and Systems. pp. 80–88.

Mo, H., Zhu, L., Shi, L., Tan, S., Wang, S., 2023. HetSev: Exploiting heterogeneity-aware
autoscaling and resource-efficient scheduling for cost-effective machine-learning
model serving. Electronics 12 (1), 240.

Ogden, S.S., Gilman, G.R., Walls, R.J., Guo, T., 2021. Many models at the edge: Scaling
deep inference via model-level caching. In: 2021 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems. ACSOS, IEEE, pp. 51–60.

Olston, C., Fiedel, N., Gorovoy, K., Harmsen, J., Lao, L., Li, F., Rajashekhar, V.,
Ramesh, S., Soyke, J., 2017. Tensorflow-serving: Flexible, high-performance ml
serving. arXiv preprint arXiv:1712.06139.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al., 2019. Language
models are unsupervised multitask learners. OpenAI Blog 1 (8), 9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
Liu, P.J., 2020. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21 (1), 5485–5551.

Reddi, V.J., Cheng, C., Kanter, D., Mattson, P., Schmuelling, G., Wu, C.-J., Anderson, B.,
Breughe, M., Charlebois, M., Chou, W., et al., 2020. Mlperf inference benchmark. In:
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture.
ISCA, IEEE, pp. 446–459.

Romero, F., Li, Q., Yadwadkar, N.J., Kozyrakis, C., 2021. Infaas: Automated model-less
inference serving.. In: USENIX Annual Technical Conference. pp. 397–411.

Shahrad, M., Fonseca, R., Goiri, I., Chaudhry, G., Batum, P., Cooke, J., Laureano, E.,
Tresness, C., Russinovich, M., Bianchini, R., 2020. Serverless in the wild: Charac-
terizing and optimizing the serverless workload at a large cloud provider. arXiv
preprint arXiv:2003.03423.

Soifer, J., Li, J., Li, M., Zhu, J., Li, Y., He, Y., Zheng, E., Oltean, A., Mosyak, M.,
Barnes, C., et al., 2019. Deep learning inference service at microsoft. In: 2019
USENIX Conference on Operational Machine Learning. OpML 19, pp. 15–17.
13
Sriraman, A., Wenisch, T.F., 2018. 𝜇Tune: Auto-Tuned threading for OLDI mi-
croservices. In: 13th USENIX Symposium on Operating Systems Design and
Implementation. OSDI 18, pp. 177–194.

Strati, F., Ma, X., Klimovic, A., 2024. Orion: Interference-aware, fine-grained GPU
sharing for ml applications. In: Proceedings of the Nineteenth European Conference
on Computer Systems. pp. 1075–1092.

Tan, C., Li, Z., Zhang, J., Cao, Y., Qi, S., Liu, Z., Zhu, Y., Guo, C., 2021. Serving DNN
models with multi-instance GPU: A case of the reconfigurable machine scheduling
problem. arXiv preprint arXiv:2109.11067.

Tang, X., Wang, P., Liu, Q., Wang, W., Han, J., 2019. Nanily: A qos-aware scheduling
for DNN inference workload in clouds. In: 2019 IEEE 21st International Conference
on High Performance Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference on Data Science and
Systems. HPCC/SmartCity/DSS, IEEE, pp. 2395–2402.

Wang, L., Yang, L., Yu, Y., Wang, W., Li, B., Sun, X., He, J., Zhang, L., 2021.
Morphling: fast, near-optimal auto-configuration for cloud-native model serving.
In: Proceedings of the ACM Symposium on Cloud Computing. pp. 639–653.

Wu, X., Xu, H., Wang, Y., 2020. Irina: Accelerating DNN inference with efficient online
scheduling. In: 4th Asia-Pacific Workshop on Networking. pp. 36–43.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V., 2019. Xlnet:
Generalized autoregressive pretraining for language understanding. Adv. Neural Inf.
Process. Syst. 32.

Yu, F., Bray, S., Wang, D., Shangguan, L., Tang, X., Liu, C., Chen, X., 2021. Automated
runtime-aware scheduling for multi-tenant DNN inference on GPU. In: 2021
IEEE/ACM International Conference on Computer Aided Design. ICCAD, IEEE, pp.
1–9.

Yu, F., Wang, D., Shangguan, L., Zhang, M., Liu, C., Chen, X., 2022. A survey of
multi-tenant deep learning inference on GPU. arXiv preprint arXiv:2203.09040.

Zhang, J., Elnikety, S., Zarar, S., Gupta, A., Garg, S., 2020. Model-Switching: Dealing
with fluctuating workloads in Machine-Learning-as-a-Service systems. In: 12th
USENIX Workshop on Hot Topics in Cloud Computing. HotCloud 20.

Zhang, H., Tang, Y., Khandelwal, A., Stoica, I., 2023. SHEPHERD: Serving DNNs
in the wild. In: 20th USENIX Symposium on Networked Systems Design and
Implementation. NSDI 23, pp. 787–808.

Zhang, C., Yu, M., Wang, W., Yan, F., 2019. Mark: Exploiting cloud services for cost-
effective slo-aware machine learning inference serving. In: 2019 USENIX Annual
Technical Conference. USENIX ATC 19, pp. 1049–1062.

Zhao, M., Jha, K., Hong, S., 2023. GPU-enabled function-as-a-service for machine
learning inference. In: 2023 IEEE International Parallel and Distributed Processing
Symposium. IPDPS, IEEE, pp. 918–928.

Zhong, Y., Liu, S., Chen, J., Hu, J., Zhu, Y., Liu, X., Jin, X., Zhang, H., 2024. Dist-
Serve: Disaggregating prefill and decoding for goodput-optimized large language
model serving. In: 18th USENIX Symposium on Operating Systems Design and
Implementation. OSDI 24, pp. 193–210.

Zou, D., Jin, X., Yu, X., Zhang, H., Demmel, J., 2023. Computron: Serving distributed
deep learning models with model parallel swapping. arXiv preprint arXiv:2306.
13835.

http://refhub.elsevier.com/S0952-1976(25)01910-4/sb27
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb27
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb27
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb27
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb27
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb27
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb27
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb28
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb28
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb28
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb28
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb28
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb28
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb28
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb29
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb29
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb29
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb29
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb29
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb30
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb31
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb31
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb31
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb31
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb31
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb31
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb31
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb32
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb32
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb32
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb33
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb33
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb33
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb33
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb33
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb34
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb34
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb34
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb34
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb34
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb35
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb35
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb35
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb35
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb35
http://arxiv.org/abs/1712.06139
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb37
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb37
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb37
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb38
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb38
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb38
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb38
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb38
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb39
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb39
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb39
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb39
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb39
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb39
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb39
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb40
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb40
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb40
http://arxiv.org/abs/2003.03423
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb42
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb42
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb42
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb42
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb42
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb43
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb43
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb43
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb43
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb43
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb44
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb44
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb44
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb44
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb44
http://arxiv.org/abs/2109.11067
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb46
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb46
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb46
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb46
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb46
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb46
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb46
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb46
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb46
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb47
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb47
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb47
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb47
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb47
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb48
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb48
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb48
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb49
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb49
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb49
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb49
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb49
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb50
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb50
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb50
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb50
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb50
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb50
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb50
http://arxiv.org/abs/2203.09040
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb52
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb52
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb52
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb52
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb52
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb53
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb53
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb53
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb53
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb53
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb54
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb54
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb54
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb54
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb54
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb55
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb55
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb55
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb55
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb55
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb56
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb56
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb56
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb56
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb56
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb56
http://refhub.elsevier.com/S0952-1976(25)01910-4/sb56
http://arxiv.org/abs/2306.13835
http://arxiv.org/abs/2306.13835
http://arxiv.org/abs/2306.13835

	Enable importance-aware model cacheability for inference serving
	Introduction
	Background and Related Work
	Deep Learning Inference Serving
	Multi-model Co-location Inference
	Memory Management for Deep Learning Inference

	Motivation
	Characterization of Serving Workload
	Execution and Loading Time Comparison

	mCache: Model-level In-memory Caching
	Challenges
	System Overview
	Caching Algorithm
	Problem Definition
	Model Utility
	Rank-based Importance Score
	Importance-Aware Model Caching

	Implementation
	Evaluation
	Experiment Setup
	Analysis of mCache's Performance
	Average Inference Latency
	Inference Latency Breakdown
	Loading Time CDF

	Comparison with Other Algorithms
	Cache Hit Ratio
	Throughput
	Model Loading Time

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Data availability
	References

